首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 250 毫秒
1.
章燕    徐慧  夏宗伟  郭彦玲   《生态学杂志》2012,23(1):166-172
采用15N库稀释-原位培养法研究了硝化抑制剂DCD、DMPP对华北盐碱性褐土氮总矿化速率和硝化速率的影响.试验在山西省运城市种植玉米的盐碱性土壤上进行,设单施尿素、尿素+DCD、尿素+DMPP 3个处理.结果表明:施肥后2周,DCD、DMPP分别使氮总矿化速率和氮总硝化速率减少了25.5%、7.3%和60.3%、59.1%,DCD对氮总矿化速率的影响显著高于DMPP,两者对氮总硝化速率的影响无显著差异;而在施肥后7周,不同硝化抑制剂对氮总硝化速率的影响存在差异.施肥后2周,3个处理的土壤氮总矿化速率和硝化速率分别是施肥前的7.2~10.0倍和5.5~21.5倍;NH4+和NO3-消耗速率分别是施肥前的9.1~12.2倍和5.1~8.4倍,这是由氮肥对土壤的激发效应所致.硝化抑制剂使氮肥更多地以NH4+形式保持在土壤中,减少了NO3-的积累.土壤氮总矿化速率和总硝化速率受硝化抑制剂的抑制是N2O减排的主要原因.  相似文献   

2.
本研究分析添加不同种硝化抑制剂及其组合的高效稳定性氯化铵氮肥对红壤硝化作用、玉米产量和氮肥利用率的影响,旨在筛选出适合酸性红壤的高效稳定性氯化铵态氮肥。在氯化铵中分别添加硝化抑制剂2-氯-6-三甲基吡啶(CP)、3,4-二甲基吡唑磷酸盐(DMPP)和双氰胺(DCD)及其组合,制成6种高效稳定性氯化铵态氮肥,以不施氮肥(CK)和施氯化铵(N)为对照,进行等氮量玉米盆栽试验。结果表明: 与N处理相比,CP+DMPP和DMPP+DCD处理红壤中铵态氮含量提高56%~62%,显著高于CP、DMPP和DCD处理;土壤表观硝化率显著降低33%~34%。添加硝化抑制剂及其组合的6个处理均显著提高了玉米生物量和氮肥吸收利用率。与N处理相比,单独添加硝化抑制剂处理生物量均显著高于硝化抑制剂组合处理,平均提高1.3倍;添加DCD处理效果最显著,玉米籽粒产量、吸氮量和氮肥吸收利用率分别显著提高4.1、6.3和4.4倍。为了达到既能低成本又能提高产量和氮肥利用率的效果,在红壤上添加硝化抑制剂DCD是最佳选择。  相似文献   

3.
本试验研究脲酶/硝化抑制剂不同组合在黑土和褐土中对尿素水解和硝化作用的调控效果,旨在筛选出适合东北黑土、褐土的高效抑制剂组合。采用室内恒温、恒湿培养试验,以不施氮肥(CK)和施用普通尿素肥料(U)为对照,研究分别添加脲酶抑制剂N-丁基硫代磷酰三胺(NBPT)及其与硝化抑制剂双氰胺(DCD)、3,4-二甲基吡唑磷酸盐(DMPP)、2-氯-6(三氯甲基)-吡啶(CP)、2-氨基-4-氯-6-甲基嘧啶(AM)、3-甲基吡唑(MP)组合制成的6种高效稳定性尿素在黑土和褐土中的尿素水解和氨氧化特征。在培养125 d内分别取土壤样品15次,通过测定2种土壤中尿素态氮、铵态氮和硝态氮含量,及氨氧化作用强度,计算硝化抑制率,确定最适合2种土壤的抑制剂或组合。结果表明: 尿素在黑土和褐土中水解时间约7 d,添加NBPT以及其与不同硝化抑制剂组合均能将尿素水解时间延长21 d以上。与U处理相比,添加抑制剂可显著增加土壤NH4+-N含量,降低NO3--N生成量,维持土壤中高NH4+-N含量的时间更久。黑土中,添加硝化抑制剂的处理均能显著抑制土壤硝化作用,有效硝化抑制时间超过125 d;DMPP、CP与NBPT配施使黑土NH4+-N含量提高1.6~1.8倍,培养125 d时其硝化抑制率分别为47.9%和24.1%。褐土中,U处理培养80 d左右基本完成硝化过程,而添加硝化抑制剂使硝化过程延长至少30 d;DCD、DMPP与NBPT配施使土壤NH4+-N含量提高2.1~3.4倍,培养125 d时其硝化抑制率分别为25.3%和23.2%。因此,尿素与NBPT+DMPP和NBPT+DCD制成的高效稳定性尿素分别在黑土和褐土中施用效果最好,其次分别是NBPT+CP和NBPT+DMPP。  相似文献   

4.
硝化抑制剂对不同旱地农田土壤N2O排放的影响   总被引:7,自引:0,他引:7  
通过室内培养法,研究了硝化抑制剂双氰胺(DCD)和3,4-二甲基吡唑磷酸盐(DMPP)对施加尿素的沈阳草甸棕壤、运城褐土、美国明尼苏达州粉砂壤土的N2O排放、氮素转化速率和微生物群落结构的影响.结果表明:抑制剂DCD和DMPP对草甸棕壤的N2O减排率为54.1% ~75.9%,但对速效氮含量影响不显著,约24%的硝化潜势被DCD所抑制,而在高含水量下DMPP却对硝化潜势无抑制作用;在褐土中,DMPP抑制效果显著,其在两种含水量下的N2O减排率为85.5%和66.7%、对硝化作用潜势抑制率为97.2%和96.4%,但DCD只在低含水量下有少许抑制效果(24.6% ~57.5%),而在高含水量下则失效;DMPP对粉砂壤土在两种含水量下的N2O减排率为42.9%和53.1%,而DCD在高含水量下未能减排N2O;在草甸棕壤和褐土中,施氮肥有效促进氨氧化细菌(AOB)的生长繁殖,DCD与DMPP使AOB amoA数量减少了4.1% ~63.5%,有显著抑制作用,而对氨氧化古菌(AOA)和反硝化菌则影响不大;与AOB相比,AOA在数量上占优势,但AOB amoA基因丰度与硝化潜势显著正相关,表明AOB在硝化过程中起了更重要的作用.  相似文献   

5.
脲酶抑制剂/硝化抑制剂对植稻土壤中尿素N行为的影响   总被引:16,自引:1,他引:15  
采用自制根盒试验,主要研究了脲酶抑制剂氢醌(HQ),硝化抑制剂双氰胺(DCD)及二者组合对离水稻根际不同距离处NH4^--N和NO3^-N分布的影响,结果表明,DCD及其与HQ组合均能显著促进稻株地上部分生长,始终显著降低水稻根际与近根际土中NH4^ -N含量直至施肥后60d,施肥后20d时,DCD及其与HQ组合可使非根际土中NH4^ -N含量显著增加,随后,却出现相反现象,施肥后20d时,距根际不同距离的土壤中,配施DCD或DCD+HQ处理均能显著降低NO3^-N含量,随后,近根际和非根际仍保持上述现象直至施肥后40d;同未施DCD处理相比,根际土壤却较早出现NO3^--N含量高峰,正好与水稻N营养需求时期相一致,因此,DCD及其与HQ组合可减少水稻根际环境下尿素N损失潜势,通过不种稻土壤和距根际3cm处的土壤中尿素无机氮形态分布的差异,充分显示了研究水稻根际土壤氮素转化及相关抑制剂对其影响时,以取离根际3cm外的土壤作为非根际明显优于不种稻土壤。  相似文献   

6.
采用同位素15N库稀释技术研究了 3种不同利用类型羊草草地土壤氮的总矿化、硝化速率以及无机氮总消耗速率 ,3种类型草地分别为 :保护区 (无人为扰动 )、割草场、过度放牧地。结果表明 :4月份过度放牧场的总矿化速率最高 ,为2 1 .3μg N/ ( g土· d) ,7月份割草场的值最高 ,为 38.5μg N/ ( g土· d) ,9月份保护区最高 ,值为 1 5 .6μg N/ ( g土· d) ,总的来看 ,保护区的总矿化速率高于其它利用类型草地 ,这与土壤有机氮的含量较高有关 ,3种类型草地铵态氮的消耗速率与总矿化速率有类似的趋势。 3种利用类型草地的氮总矿化速率均以 7月份为最高 ,分别为 36 .5、38.5、2 9.8μg N/ ( g土· d)。总硝化速率放牧场最高 ,保护区、割草场、放牧场 7月份的总硝化速率分别为 1 8.6、2 1 .4 5、35 .4 5 μg N/ ( g土·d)。 3种利用类型草地中放牧场的硝态氮含量最高 ,其消耗的速率也高于其它两种利用类型草地  相似文献   

7.
研究了脲酶抑制剂(NBPT)、硝化抑制剂(DCD)及二者组合在草甸棕壤上施用对尿素态N转化及土壤总有效态N、微生物量N的影响.结果表明,尿素配施NBPT、DCD及抑制剂组合能够增加尿素水解后土壤NH4^+含量2%-53%。显著降低了氧化态N的浓度,抑制了土壤中铵态N的氧化,增加土壤总有效N34%-44%,小麦吸N量增加0.26%-6.79%。其中以脲酶抑制剂与硝化抑制剂组合的效果最明显.抑制剂施用增加了微生物在小麦生长初期对有效态N固持,有利于后期土壤有效态N的矿化.  相似文献   

8.
高效稳定性硫酸铵氮肥在黑土中的施用效果   总被引:1,自引:0,他引:1  
为筛选高效稳定性氮肥,采用盆栽试验,通过监测施用不同处理的稳定性硫酸铵对黑土铵态氮和硝态氮含量、表观硝化率、硝化抑制率、玉米生长指标、产量和氮素效率等指标的影响,研究添加不同生化抑制剂配方的稳定性硫酸铵态氮肥在吉林黑土玉米栽培中的施用效果。本试验以不施氮肥(CK)和施硫酸铵(N)为对照,在硫酸铵中分别添加硝化抑制剂3,4-二甲基吡唑磷酸盐(DMPP)、2-氯-6-三甲基吡啶(CP),氮保护剂(N-GD)和肥料增效剂(HFJ)及其组合,制成9种稳定性硫酸铵氮肥。结果表明: 与单施硫酸铵氮肥处理相比,在黑土中添加DMPP和DMPP组合显著影响土壤中铵态氮和硝态氮含量及土壤表观硝化率,铵态氮含量提高1.4~2.0倍,硝态氮含量降低13.6%~17.9%,土壤表观硝化率降低55.3%~59.8%;添加DMPP、DMPP+HFJ和DMPP+N-GD组合硝化抑制率最高,达到16.5%以上;添加DMPP+HFJ+N-GD和HFJ的硫酸铵处理玉米叶片叶绿素含量增加最显著,增加4.5~5.3倍;硫酸铵添加硝化抑制剂和肥料增效剂对株高无显著影响;添加HFJ的硫酸铵处理玉米生物量、籽粒产量、经济系数、收获指数、氮肥农学利用率、氮素吸收利用率、肥料贡献率和氮肥偏生产力增加最显著,分别增加1.2、2.5、0.7、0.6、2.7、2.1、1.3和2.5倍。添加HFJ和DMPP、DMPP+HFJ、DMPP+N-GD处理的硫酸铵处理在黑土中施用效果最好,但是DMPP成本较高,因此,兼顾成本和氮肥利用率,建议稳定性硫酸铵态氮肥生化抑制剂首选氮肥增效剂HFJ,其次选择DMPP+HFJ或者DMPP+N-GD。  相似文献   

9.
脲酶抑制剂和硝化抑制剂可以通过调控尿素氮转化的全过程延长氮肥肥效,提高氮肥利用效率,但目前所用脲酶抑制剂和硝化抑制剂多为化学合成材料,成本高,且其抑制效果受土壤性质、气候条件和作物体系等多方面因素的影响。本研究采用田间小区试验,以冬小麦-夏玉米轮作种植体系为研究对象,设置不施氮肥(CK)、单施尿素(N)、尿素+双氰胺(ND)、尿素+腐植酸(NH)、尿素+沸石(NP)、尿素+N-丁基硫代磷酰三胺+双氰胺(NUD)、尿素+腐植酸+双氰胺(NHD)、尿素+沸石+双氰胺(NPD)8个处理,探讨在等施氮量条件下腐植酸或沸石两种天然增效剂及其与化学硝化抑制剂双氰胺(DCD)复配对小麦和玉米轮作体系周年产量、氮素利用效率、土壤硝态氮累积及土壤-植物系统氮平衡的影响。结果表明:与NH或NP处理相比,腐植酸和沸石分别与DCD复配(NHD和NPD)后,玉米季产量(11268和11397 kg·hm-2)及周年总产量(20494和20582 kg·hm-2)均显著提高,且达到了与化学脲酶抑制剂和硝化抑制剂复配处理(NUD)基本相当的产量水平;与N处理相比,NHD和...  相似文献   

10.
采用田间盆栽试验,研究生化抑制剂与生物刺激素腐植酸结合制成的高效稳定性增效尿素肥料在黄土中的氮素转化特征、增产效果和氮素肥料表观利用率,以探明其施用效果,为开发适宜黄土施用的新型增效尿素肥料提供理论依据。本研究以不施氮肥(CK)和施尿素氮肥(N)为对照,在尿素中分别添加腐植酸(F)、N-丁基硫代磷酰三胺(NBPT)、3,4-二甲基吡唑磷酸盐(DMPP)和2-氯-6-三甲基吡啶(CP),以及腐植酸与3种生化抑制剂分别组合(NBPT+F、DMPP+F、CP+F)。结果表明: 与N处理相比,F、NBPT+F、DMPP+F和CP+F处理均能显著提高玉米的产量、叶片叶绿素含量、叶面积指数和植株吸氮量,对土壤铵态氮和硝态氮含量也有显著影响。与单独施用生化抑制剂相比,添加腐植酸可提高玉米叶片叶绿素含量。与CP相比,CP+F玉米的植株吸氮量、叶绿素含量、氮肥吸收利用率均显著提高;与NBPT相比,NBPT+F硝化抑制率提高10.7%,但玉米产量、叶面积指数、植株吸氮量和氮肥利用率等均有所降低;与DMPP相比,DMPP+F显著降低了玉米产量、叶面积指数、植株吸氮量、氮肥利用率和硝化抑制率等。综合玉米产量、植株吸氮量、氮肥吸收利用率以及土壤铵态氮、硝态氮含量等指标,在黄土地区施用尿素肥料时,建议添加腐植酸和CP以提升尿素性能,从而提高产量和肥料利用率。  相似文献   

11.
火烧对草地土壤氮总矿化、硝化及无机氮消耗速率的影响   总被引:9,自引:1,他引:8  
采用同位素^15N库稀释技术结合扰动较小的管型取样法,测定了羊草草地火烧区与未烧区不同季节土壤氮的总矿化速率、总硝化速率、无机氮消耗速率.结果表明,火烧地的氮总矿化与硝化速率在牧草返青后的4、5月份均高于未烧地,7月份差异不显著,到生长季末的9月份又低于未烧地;火烧地NH^4-N的消耗速率7月份以前均高于未烧地,9月份低于未烧地,N03^--N的消耗4、5份火烧地要高于未烧地,7、9月份又低于未烧地;火烧地土壤NH4^ -N含量在4、5和7月份均高于未烧地,9月份基本没有差别,而N03^--N在4、5月份无大差别,7、9月份高于未烧地.  相似文献   

12.
不同土地利用类型对丹江口库区土壤氮矿化的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
氮(N)素是陆地生态系统净初级生产力的重要限制因子, 土地利用类型的变化对生态系统氮循环过程有着重要的影响。采用PVC顶盖埋管原位培养的方法, 对丹江口库区清塘河流域相邻的侧柏(Platycladus orientalis)人工林、人工种植灌木林地和农田3种土地利用类型的氮素矿化和硝化作用进行了研究。结果表明, 侧柏人工林、灌木林地和农田的NH4+-N浓度(mg·kg-1)依次为1.33 ± 0.20、1.67 ± 0.17和1.62 ± 0.13, 不同土地利用类型间的NH4+-N浓度无显著性差异; 而3种土地利用类型下土壤NO3--N浓度(mg·kg-1)差异显著, 农田NO3--N浓度(9.00 ± 0.73)显著高于侧柏人工林(1.27 ± 0.18)和灌木林地(3.51 ± 0.11)。NO3--N在灌木林地和农田中分别占土壤无机氮库的67.8%和84.8%, 是土壤无机氮库的主要存在形式; 而侧柏人工林中NO3--N和NH4+-N浓度则基本相等。土壤硝化速率(mg·kg-1·30 d-1)从农田(7.13 ± 2.19)、灌木林地(2.56 ± 1.07)到侧柏人工林(0.85 ± 0.10)显著性降低。侧柏人工林、灌木林地和农田的矿化速率(mg·kg-1·30 d-1)依次为0.98 ± 0.12、2.52 ± 1.25和6.58 ± 2.29。矿化速率和硝化速率显著正相关, 但是矿化速率在不同的土地利用类型间差异不显著。培养过程中灌木林地和农田NH4+-N的消耗大于积累, 氨化速率为负值, 导致灌木林地和农田矿化速率小于硝化速率。氮素的矿化和硝化作用受土壤含水量和土壤温度的影响, 并对土壤含水量更为敏感。土壤C:N与土壤矿化和硝化速率显著负相关。研究结果表明: 土地利用类型的变化会改变土壤微环境和土壤C:N, 进而会影响到土壤氮循环过程。  相似文献   

13.
三江平原典型小叶章湿地土壤氮素净矿化与硝化作用   总被引:6,自引:2,他引:4  
2004年6月—2005年7月,利用PVC顶盖原位培育法研究了三江平原典型草甸小叶章湿地和沼泽化草甸小叶章湿地土壤(0~15cm)无机氮库、净矿化/硝化速率动态、影响因素及年净矿化/硝化量.结果表明:两种湿地土壤的无机氮均呈明显的动态变化特征,其NH4 -N、NO3-N含量均表现为典型草甸小叶章湿地>沼泽化草甸小叶章湿地.两种湿地土壤的净矿化/硝化速率均呈明显的波动变化,生物固持作用、反硝化作用以及雨季较多降水是导致净矿化/硝化速率出现负值的主要原因.温度、降水、土壤有机质含量、C/N和pH是引起二者土壤无机氮库、净矿化/硝化速率存在明显差异的重要原因.典型草甸小叶章湿地的年净矿化量(19.41kg·hm-2)、年净硝化量(4.27kg·hm-2)以及净硝化量占净矿化量的百分比(22.00%)明显高于沼泽化草甸小叶章湿地(5.51kg·hm-2、0.28kg·hm-2和5.08%),说明前者的氮有效性以及维持可利用氮的能力明显高于后者.  相似文献   

14.
元素硫和双氰胺对蔬菜地土壤硝态氮淋失的影响   总被引:13,自引:2,他引:11  
采用温室盆栽淋洗试验,以NH4HCO3为氮肥源,研究了元素硫(S0)和双氰胺(DCD)对种葱和不种作物土壤NO3--N淋失量和NO3--N、NH4+-N浓度的影响.结果表明,在12周试验期间,与对照相比,S0+DCD和S0处理NO3--N淋失量分别低83%~86%和83%;NH4+-N淋失量分别高16.8~21.0 mg·盆-1和20.4~25.0 mg·盆-1;而同期无机氮(NO3--N、NH4+-N)淋失量则低60%.试验结束后,,S0+DCD和S0处理土壤无机氮含量分别比对照高79.9%~85.4%和74.9%~82.6%,以NH4+-N为主.S0+DCD处理无机氮淋失量比S0和DCD处理分别低4.6%~14.4%和15.4%~30.1%;试验结束后土壤无机氮分别高6.1%和16.8~36.0%.在Na2S2O3+DCD、Na2S2O3和DCD处理中也发现类似结果.可见S0施入土壤具有与DCD同样的氨稳定和硝化抑制作用.S0与DCD配合施用可使DCD的硝化抑制性增强,其作用机理是S0氧化中间体S2O32-、S4O62-,具有抑制硝化和DCD降解作用,延缓DCD硝化抑制效果.S0与DCD配合施用可用于延缓太湖流域蔬菜地土壤NH4+-N向NO3--N转化,减少氮向水体迁移风险.  相似文献   

15.
3,5-二甲基吡唑磷酸盐(DMPZP)对土壤硝化作用的影响   总被引:3,自引:0,他引:3  
采用好气培养法,以双氰胺(DCD)为参比对象研究了新型吡唑类硝化抑制剂3,5-二甲基吡唑磷酸盐(DMPZP)对土壤硝化作用的影响.结果表明,DMPZP对土壤中的铵氧化作用有较强的抑制效果,在施用量为1.0%(纯N含量)时能显著提高土壤中的NH4+-N浓度,降低NO3--N浓度.DMPZP的硝化抑制效应随用量的增加而增强,相同质量的DMPZP的硝化抑制效果不及DCD,而DCD又不及2倍质量的DMPZP,但等摩尔数(物质量)的DMPZP硝化抑制效果明显优于DCD. DMPZP在施用后的第7天至第14天的硝化抑制作用最强,与不添加抑制剂的处理相比,DMPZP添加量为1.0%和2.0%(纯N含量)时的表观硝化率在第7天和第14天分别降低了29.3%、41.7%和18.6%、34.3%;在此期间,添加DMPZP处理的硝化抑制率均高于30%.DMPZP的施用还可减缓土壤pH的降低速率,但施用DMPZP和DCD对土壤pH的影响差异不显著.  相似文献   

16.
The importance of heterotrophic nitrification was studied in soil from a mixed-conifer forest. Three sites in the forest were sampled: a clear cut area, a young stand and a mature stand. In the mature stand, the mineral soil (0–10 cm) and the organic layer were sampled separately. Gross rates of N mineralization and nitrification were measured by15NH 4 + and15NO 3 isotopic pool dilution, respectively. The rates of autotrophic and heterotrophic nitrification were distinguished by use of acetylene as a specific inhibitor of autotrophic nitrification. In samples supplemented with15NH 4 + and treated with acetylene, no15NO 3 was detectable showing that the acetylene treatment effectively blocked the autotrophic nitrification, and that NH 4 + was not a substrate for heterotrophic nitrification. In the clear cut area, autotrophic nitrification was the most important NO 3 generating process with total nitrification (45 ug N kg–1h–1) accounting for about one-third of gross N mineralization (140 ug N kg–1 h–1). In the young and mature forested sites, gross nitrification rates were largely unaffected by acetylene treatment indicating that heterotrophic nitrification dominated the NO 3 generating process in these areas. In the mature forest mineral and organic soil, nitrification (heterotrophic) was equal to only about 5% of gross mineralization (gross mineralization rates of 90 ug N kg–1 h–1 mineral; 550 ug N kg–1 h–1 organic). The gross nitrification rate decreased from the clear cut area to the young forest area to the mineral soil of the mature forest (45; 17; 4.5 ug kg–1 h–1 respectively). The15N isotope pool dilution method, combined with acetylene as an inhibitor of autotrophic nitrification provided an effective technique for assessing the importance of heterotrophic nitrification in the N-cycle of this mixed-conifer ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号