首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   32篇
  国内免费   4篇
  2023年   8篇
  2021年   4篇
  2020年   22篇
  2019年   20篇
  2018年   12篇
  2017年   11篇
  2016年   8篇
  2015年   13篇
  2014年   16篇
  2013年   21篇
  2012年   8篇
  2011年   18篇
  2010年   7篇
  2009年   7篇
  2008年   4篇
  2007年   12篇
  2006年   6篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
排序方式: 共有213条查询结果,搜索用时 15 毫秒
81.
82.
Traditional expectations for how widely and how often freshwater invertebrates disperse differ from empirical data. Freshwater invertebrates have been characterized as frequent, widespread dispersers, particularly those that are transported passively. Our review finds that this characterization may describe the potential for dispersal in some taxa, but it is not an accurate generalization for actual dispersal rates. High variance among habitats and taxonomic groups is a consistent theme. Advances in population genetics may help resolve these issues, but underlying assumptions should be carefully tested. Further, even unbiased estimates of gene flow may not equate with individual movement, because not all dispersers survive and reproduce. Some freshwater invertebrates may exist in classic Levins metapopulations. However, other species fit into a broader metapopulation definition, where temporal dispersal via diapause is functionally equivalent to spatial dispersal. In the latter case, local extinctions and rescue effects may be rare or absent. Finally, limited dispersal rates in many taxa suggest that theories of freshwater community assembly and structure can be made more robust by integrating dispersal and local processes as joint, contingent regulators. Recent research on freshwater invertebrate dispersal has substantially advanced our basic and applied understanding of freshwaters, as well as evolutionary ecology in general.  相似文献   
83.
84.
Abstract 1. Current views in ecology emphasise that community structure is the sum of multiple processes, with imprints of both regional and local drivers. However, the degree to which stream insect assemblages are structured by spatial configuration (complying with the dispersal‐based neutral hypothesis) and local environmental features (complying with the niche‐based species sorting hypothesis) has not been rigorously examined based on surveys in multiple years. 2. Stream sites in a boreal drainage system were surveyed during three consecutive years and the relative contribution of spatial configuration and local environmental variables to aquatic insect assemblage structure (characterised by both abundance and presence–absence data) was assessed. Separate analyses were conducted for mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and non‐biting midges (Diptera: Chironomidae) in each year. 3. There were no relationships between the spatial location and local environmental features of streams in Mantel tests, facilitating exploration of their independent effects on assemblage structure. The study found virtually no effects of spatial location on stream insect assemblages across the study drainage system, as evidenced by Mantel tests and canonical correspondence analyses (CCA). The environmental variables were also rather weakly associated with assemblage structure, with the total amount of explained variation ranging from 9.8% to 31.7% in the CCAs. There were no appreciable differences in the amount of environment‐related explained variation in assemblage structure between mayflies, stoneflies, caddisflies, and midges, but some between‐year differences were noticeable in most insect groups. The environmental variables that were significantly related to assemblage structure exhibited some between‐group and between‐year variability. In general, patterns shown by abundance and presence–absence data were highly similar. 4. It appears that stream insect assemblages comply with the niche‐based species sorting hypothesis in the context of metacommunity ecology. In contrast, the absence of spatial structuring suggests that stream insect assemblages do not comply with the neutral hypothesis, being not strongly dispersal limited at the within‐drainage basin scale.  相似文献   
85.
86.
87.
Habitat connectivity is considered to have an important role on the persistence of populations in the face of habitat fragmentation, in particular, for species with conservation concern. However, it can also impose indirect negative effects on native species through the spread of invasive species. Here, we investigated direct and indirect effects of habitat connectivity on populations of invasive bullfrogs and native wrinkled frogs and how these effects are modified by the presence of common carp, a resident shared predator, in a farm pond system in Japan. The distribution pattern analysis using a hierarchical Bayesian modelling indicated that bullfrogs had negative effects on wrinkled frogs, and that these negative effects were enhanced with increasing habitat connectivity owing to the metapopulation structure of bullfrogs. The analysis also suggested that common carp mitigated these impacts, presumably owing to a top-down trophic cascade through preferential predation on bullfrog tadpoles. These presumed interspecific interactions were supported by evidence from laboratory experiments, i.e. predation by carp was more intense on bullfrog tadpoles than on wrinkled frog tadpoles owing to the difference in refuge use. Our results indicate that metacommunity perspectives could provide useful insights for establishing effective management strategies of invasive species living in patchy habitats.  相似文献   
88.
Understanding how ecological processes determine patterns among species coexisting within ecosystems is central to ecology. Here, we explore relationships between species’ local coexistence and their trophic niches in terms of their feeding relationships both as consumers and as resources. We build on recent concepts and methods from community phylogenetics to develop a framework for analysing mechanisms responsible for community composition using trophic similarity among species and null models of community assembly. We apply this framework to 50 food webs found in 50 Adirondack lakes and find that species composition in these communities appears to be driven by both bottom‐up effects by which the presence of prey species selects for predators of those prey, and top‐down effects by which prey more tolerant of predation out‐compete less tolerant prey of the same predators. This approach to community food webs is broadly applicable and shows how species interaction networks can inform an increasingly large array of theory central to community ecology.  相似文献   
89.
Abstract 1. Colonisation is a critical ecological process influencing both population and community level dynamics by connecting spatially discrete habitat patches. How communities respond to both natural and anthropogenic disturbances, furthermore, requires a basic understanding of how any environmental change modifies colonisation rates. For example, disturbance‐induced shifts in the quantity of forest cover surrounding aquatic habitats have been associated with the distribution and abundance of numerous aquatic taxa. However, the mechanisms generating these broad and repeatable field patterns are unclear. 2. Such patterns of diversity could result from differential spatial mortality post colonisation, or from colonisation alone if species select sites non‐randomly along canopy coverage gradients. We examined the colonisation/oviposition dynamics of aquatic beetles in experimental ponds placed under both open and closed forest canopies. 3. Canopy coverage imposed a substantial behavioural filter on the colonisation and reproduction of aquatic beetles representing multiple trophic levels, and resulted in significantly higher abundance, richness, and oviposition activity in open canopy ponds. These patterns strengthened overtime; although early in the experiment, the most abundant beetle had similar abundance in open and closed ponds. However, its abundance subsequently declined and then most other species heavily colonised open canopy ponds. 4. The primary response of many aquatic species to disturbances that generate canopy coverage gradients surrounding aquatic ecosystems is behavioural. The magnitude of the colonisation responses reported here rivals, if not exceeds, those produced by predators, suggesting that aquatic landscapes are behaviourally assessed and partitioned across multiple environmental gradients. The community level structure produced solely by selective colonisation, is predicted to strongly modify how patch area and isolation affect colonisation rates and the degree to which communities are linked by the flux of individuals and species.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号