首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   6篇
  国内免费   2篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   5篇
  2019年   9篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   7篇
  2013年   9篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
排序方式: 共有80条查询结果,搜索用时 312 毫秒
61.
Liposomal amphotericin B (L-AmB) has been a key cornerstone for the management of invasive fungal infections (IFI) caused by a wide array of molds and yeasts during the last three decades. Multiple studies performed over this period have generated a large body of evidence on its efficacy and safety, becoming the main antifungal agent in the management of IFI in patients with hematologic malignancies in several not mutually exclusive clinical settings. First, L-AmB is the most commonly used antifungal agent in patients undergoing intensive chemotherapy for acute leukemia and high-risk myelodysplastic syndrome, as well as in hematopoietic stem cell transplant recipients. Additionally, due to the administration of newer targeted therapies (such as monoclonal antibodies or small molecule inhibitors), opportunistic mold infections are increasingly being reported in patients with hematologic malignancies usually considered low-risk for IFI. These agents usually have a high drug-drug interaction potential, being triazoles, commonly used for antifungal prophylaxis, included. Finally, patients developing breakthrough IFI because of either subtherapeutic concentrations of antifungal prophylactic drugs in blood or selection of resistant strains, require broad spectrum antifungal therapy, usually with an antifungal of a different class. In both situations, L-AmB remains as the best option for early antifungal therapy.  相似文献   
62.
目的:探讨共振喇曼光谱技术用于早期恶性肿瘤诊断的研究。方法:利用氩离子激光作为线偏振光的特点,采集偏振荧光光谱,对荧光光谱的偏振态进行分析。利用不同荧光物质的荧光可能具有不同偏振态的特点减少其它荧光物质的荧光对光谱分析的影响。血清样品产生的荧光也具有确定的偏振性。对所检测病人血清经激光分析仪进行喇曼光谱技术分析,光谱数据经计算机软件处理,自动显示图谱和数据,并直接给出各项指标及诊断提示。本结果与细胞病理学结果进行了对照研究。结果:恶性肿瘤样本176例,检测出阳性病例141例,阳性符合率为80.1%;良性肿瘤样本52例,4例阳性,假阳性率为7.7%;正常体检样本248例,检测结果均为阴性。结论:喇曼光谱技术适用于肿瘤初筛、普查及早期诊断,有推广应用前途。  相似文献   
63.
血液肿瘤即造血系统的恶性肿瘤,是一种严重危害公共健康的疾病。目前,血液肿瘤诊断治疗的最理想方法就是分子特异性诊断和靶向治疗,但该方法面临的最大困难就是分子靶点的选择。噬菌体展示技术是近十年发展起来的一种新的生物学技术,具有高通量筛选、模拟天然表位、易于纯化、将蛋白功能与编码基因相统一等优点,广泛应用于功能性蛋白质和多肽的筛选、蛋白质间的识别与相互作用、抗原表位的鉴定、基因工程抗体的筛选等多个分子生物学领域,非常适于理想靶点的选择。目前,噬菌体文库技术在血液肿瘤诊治中的应用主要集中在噬菌体抗体文库和噬菌体随机肽库上。本文就噬菌体展示技术在血液肿瘤诊断治疗中的研究成果做一总结分析,并对该技术在这一领域的应用前景进行展望。  相似文献   
64.
65.
66.
Allogeneic bone marrow transplant is a life-saving procedure for adults and children that have high-risk or relapsed hematological malignancies. Incremental advances in the procedure, as well as expanded sources of donor hematopoietic cell grafts have significantly improved overall rates of success. Yet, the outcomes for patients for whom suitable donors cannot be found remain a significant limitation. These patients may benefit from a hematopoietic cell transplant wherein a relative donor is fully haplotype mismatched. Previously this procedure was limited by graft rejection, lethal graft-versus-host disease, and increased treatmentrelated toxicity. Recent approaches in haplo-identical transplantation have demonstrated significantly improved outcomes. Based on years of incremental preclinical research into this unique form of bone marrow transplant, a range of approaches have now been studied in patients in relatively large phase Ⅱ trials that will be summarized in this review.  相似文献   
67.
Death associated protein kinase (DAP-kinase) is a pro-apoptotic calcium/calmodulin-regulated serine/threonine kinase with a multidomain structure that participates in a wide array of apoptotic systems initiated by IFN-, TNF-, activated Fas, and detachment from extracellular matrix. At various stages during tumor development, cells are subjected to apoptosis inducing stimuli and genetic mutations causing inhibition of apoptosis confer a selective advantage to cells. Thus, apoptosis and its regulation play an important role in tumor initiation, progression and metastasis. It has been demonstrated that the tumor-suppressive properties of DAP-kinase operate at two different apoptotic checkpoints in the course of tumor development; first, during the early oncogene-activated apoptotic checkpoint mediated by p19ARF-p53 pathway and second, during the late stages of metastasizing cells entering the circulation after detachment from extracellular matrix. Promoter hypermethylation of DAP-kinase has been observed in a high variety of primary tumors including head and neck tumors, and non-small cell lung cancers, where an association with poor prognosis was also noted. Notably, high frequencies of DAP-kinase methylation have been found in B cell lymphomas and myeloma, where loss of control of c-Myc induced hyperproliferation from inactivated DAP-kinase may possibly play an important role in the pathogenesis of these B cell neoplasms.  相似文献   
68.
Although the kinase receptor TrkA may play an important role in acute myeloid leukemia (AML), its involvement in other types of leukemia has not been reported. Furthermore, how it contributes to leukemogenesis is unknown. Here, we describe a molecular network that is important for TrkA function in leukemogenesis. We found that TrkA is frequently overexpressed in other types of leukemia such as acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), and myelodysplastic syndrome (MDS) including AML. In addition, TrkA was overexpressed in patients with MDS or secondary AML evolving from MDS. TrkA induced significant hematological malignancies by inducing PLK-1 and Twist-1, and enhanced survival and proliferation of leukemia, which was correlated with activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway. Moreover, endogenous TrkA associated with c-Src complexes was detected in leukemia. Suppression of c-Src activation by TrkA resulted in markedly decreased expression of PLK-1 and Twist-1 via suppressed activation of Akt/mTOR cascades. These data suggest that TrkA plays a key role in leukemogenesis and reveal an unexpected physiological role for TrkA in the pathogenesis of leukemia. These data have important implications for understanding various hematological malignancies.  相似文献   
69.
Deoxycytidine kinase (dCK) is essential for the phosphorylation of cytarabine (ara‐C), a deoxycytidine analog active against acute leukemias. Resistance to ara‐C has been linked to dCK deficiency. In this study we determined the expression of the dCK protein in pediatric malignancies, using immunocytochemistry and related the expression levels to in vitro ara‐C sensitivity (measured with the MTT‐assay). dCK expression was high in the AML and retinoblastoma samples, in the ALL samples dCK expression ranged from low to very high. The brain tumor samples expressed low levels of dCK. AML was significantly more sensitive in vitro to ara‐C compared to ALL (p = 0.03). Retinoblastoma and brain tumor cells were extremely resistant in vitro, we were unable to detect more than 50% ara‐C induced cell kill in the majority of samples. Samples were combined in groups according to dCK expression. Samples with low dCK expression were significantly more resistant to ara‐C compared to samples with high dCK expression. In conclusion, dCK expression varies between individual samples and between different types of malignancies and may play a role in resistance to ara‐C in particular tumor types.  相似文献   
70.
In order to elucidate the mechanism of hyperuricemia in hematologic malignancies, we have retrospectively investigated the uric acid metabolism in 418 chemotherapy-naïve patients with hematologic malignancies. Hyperuricemia was present in 116 (27.8%) of these patients on initial hospitalization. Among 65 hyperuricemic patients analyzed uric acid metabolism, six (9.2%) had overproduction type, 52 (80.0%) had underexcretion type, and seven (10.8%) had a mixed type. Fourteen patients (3.3%) developed tumor lysis syndrome in 418 patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号