首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   28篇
  国内免费   7篇
  2023年   7篇
  2022年   7篇
  2021年   5篇
  2020年   15篇
  2019年   10篇
  2018年   8篇
  2017年   8篇
  2016年   8篇
  2015年   12篇
  2014年   13篇
  2013年   19篇
  2012年   14篇
  2011年   9篇
  2010年   11篇
  2009年   6篇
  2008年   11篇
  2007年   6篇
  2006年   10篇
  2005年   5篇
  2004年   14篇
  2003年   12篇
  2002年   12篇
  2001年   11篇
  2000年   13篇
  1999年   10篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有268条查询结果,搜索用时 31 毫秒
41.
鼠脑驱动蛋白(rat brain kinesin)是一种利用水解ATP所释放的能量在微管束上高速并且连续性运动的常规驱动蛋白. 它在神经突触的物质运输中起着重要作用. 研究驱动蛋白是如何将ATP中储藏的化学能转化为机械动能是理解其运动机能的重要课题. 本课题获得了鼠脑驱动蛋白单体与ATP结构类似物AMPPCP形成的复合物晶体结构. 将这个晶体结构与鼠脑驱动蛋白单体-另一种ATP结构类似物AMPPNP形成的复合物晶体结构以及鼠脑驱动蛋白单体-ATP水解产物ADP形成的复合物晶体结构进行相互比较,揭示了活性中心的开关区域I中丝氨酸203可能作为质子的供体,加速了ATP中gamma-磷酸和beta-磷酸的断裂,从而导致ATP的水解.  相似文献   
42.
43.
Kinesin-14 motor proteins play a variety of roles during metaphase and anaphase. However, it is not known whether members of this family of motors also participate in the dramatic changes in mitotic spindle organization during the transition from telophase to cytokinesis. We have identified the minus-end-directed motor, KIFC3, as an important contributor to central bridge morphology at this stage. KIFC3’s unique motor-dependent localization at the central bridge allows it to congress microtubules, promoting efficient progress through cytokinesis. Conversely, when KIFC3 function is perturbed, abscission is delayed, and the central bridge is both widened and extended. Examination of KIFC3 on growing microtubules in interphase indicates that it caps microtubules released from the centrosome, both in the region of the centrosome and in the cell periphery. In line with other kinesin-14 family members, KIFC3 may guide free microtubules to their destination at the bridge and/or may slide and crosslink central bridge microtubules in order to stage the cells for abscission.  相似文献   
44.
Understanding the mechanisms by which molecular motors coordinate their activities to transport vesicular cargoes within neurons requires the quantitative analysis of motor/cargo associations at the single vesicle level. The goal of this protocol is to use quantitative fluorescence microscopy to correlate (“map”) the position and directionality of movement of live cargo to the composition and relative amounts of motors associated with the same cargo. “Cargo mapping” consists of live imaging of fluorescently labeled cargoes moving in axons cultured on microfluidic devices, followed by chemical fixation during recording of live movement, and subsequent immunofluorescence (IF) staining of the exact same axonal regions with antibodies against motors. Colocalization between cargoes and their associated motors is assessed by assigning sub-pixel position coordinates to motor and cargo channels, by fitting Gaussian functions to the diffraction-limited point spread functions representing individual fluorescent point sources. Fixed cargo and motor images are subsequently superimposed to plots of cargo movement, to “map” them to their tracked trajectories. The strength of this protocol is the combination of live and IF data to record both the transport of vesicular cargoes in live cells and to determine the motors associated to these exact same vesicles. This technique overcomes previous challenges that use biochemical methods to determine the average motor composition of purified heterogeneous bulk vesicle populations, as these methods do not reveal compositions on single moving cargoes. Furthermore, this protocol can be adapted for the analysis of other transport and/or trafficking pathways in other cell types to correlate the movement of individual intracellular structures with their protein composition. Limitations of this protocol are the relatively low throughput due to low transfection efficiencies of cultured primary neurons and a limited field of view available for high-resolution imaging. Future applications could include methods to increase the number of neurons expressing fluorescently labeled cargoes.  相似文献   
45.
《Developmental cell》2022,57(1):5-18.e8
  1. Download : Download high-res image (273KB)
  2. Download : Download full-size image
  相似文献   
46.
Kinesin‐2 motors power anterograde intraflagellar transport (IFT), a highly ordered process that assembles and maintains cilia. However, it remains elusive how kinesin‐2 motors are regulated in vivo. Here, we performed forward genetic screens to isolate suppressors that rescue the ciliary defects of OSM‐3‐kinesin (homolog of mammalian homodimeric kinesin‐2 KIF17) mutants in Caenorhabditis elegans. We identified the C. elegans dyf‐5 and dyf‐18, which encode the homologs of mammalian male germ cell‐associated kinase and cell cycle‐related kinase, respectively. Using time‐lapse fluorescence microscopy, we show that DYF‐5 and DYF‐18 are IFT cargo molecules and are enriched at the distal segments of sensory cilia. Mutations of dyf‐5 and dyf‐18 generate elongated cilia and ectopic localization of the heterotrimeric kinesin‐2 (kinesin‐II) at the ciliary distal segments. Genetic analyses reveal that dyf‐5 and dyf‐18 are important for stabilizing the interaction between IFT particles and OSM‐3‐kinesin. Our data suggest that DYF‐5 and DYF‐18 act in the same pathway to promote handover between kinesin‐II and OSM‐3 in sensory cilia.   相似文献   
47.
A novel kinesin-like protein with a calmodulin-binding domain   总被引:4,自引:0,他引:4  
Calcium regulates diverse developmental processes in plants through the action of calmodulin. A cDNA expression library from developing anthers of tobacco was screened with 35S-labeled calmodulin to isolate cDNAs encoding calmodulin-binding proteins. Among several clones isolated, a kinesin-like gene (TCK1) that encodes a calmodulin-binding kinesin-like protein was obtained. The TCK1 cDNA encodes a protein with 1265 amino acid residues. Its structural features are very similar to those of known kinesin heavy chains and kinesin-like proteins from plants and animals, with one distinct exception. Unlike other known kinesin-like proteins, TCK1 contains a calmodulin-binding domain which distinguishes it from all other known kinesin genes. Escherichia coli-expressed TCK1 binds calmodulin in a Ca2+-dependent manner. In addition to the presence of a calmodulin-binding domain at the carboxyl terminal, it also has a leucine zipper motif in the stalk region. The amino acid sequence at the carboxyl terminal of TCK1 has striking homology with the mechanochemical motor domain of kinesins. The motor domain has ATPase activity that is stimulated by microtubules. Southern blot analysis revealed that TCK1 is coded by a single gene. Expression studies indicated that TCK1 is expressed in all of the tissues tested. Its expression is highest in the stigma and anther, especially during the early stages of anther development. Our results suggest that Ca2+/calmodulin may play an important role in the function of this microtubule-associated motor protein and may be involved in the regulation of microtubule-based intracellular transport.  相似文献   
48.
动蛋白(kinesin)是一种具有ATPase活性的微管马达蛋白,它可以利用水解ATP产生的能量沿微管运动. 由于动蛋白参与了众多的生物学过程,近年来动蛋白的研究成为一个热点. 文章总结了动蛋白的结构、沿微管运动的机制、活性调节及动蛋白的分布与功能.  相似文献   
49.
Members of the kinesin superfamily are involved in key functions during intracellular transport and cell division. Their involvement in cell division makes certain kinesins potential targets for drug development in cancer chemotherapy. The two most advanced kinesin targets are Eg5 and CENP-E with inhibitors in clinical trials. Other mitotic kinesins are also being investigated for their potential as prospective drug targets. One recently identified novel potential cancer therapeutic target is the Mitotic kinesin-like protein 2 (MKLP-2), a member of the kinesin-6 family, which plays an essential role during cytokinesis. Previous studies have shown that inhibition of MKLP-2 leads to binucleated cells due to failure of cytokinesis. We have previously identified compound 1 (paprotrain) as the first selective inhibitor of MKLP-2. Herein we describe the synthesis and biological evaluation of new analogs of 1. Our structure–activity relationship (SAR) study reveals the key chemical elements in the paprotrain family necessary for MKLP-2 inhibition. We have successfully identified one MKLP-2 inhibitor 9a that is more potent than paprotrain. In addition, in vitro analysis of a panel of kinesins revealed that this compound is selective for MKLP-2 compared to other kinesins tested and also does not have an effect on microtubule dynamics. Upon testing in different cancer cell lines, we find that the more potent paprotrain analog is also more active than paprotrain in 10 different cancer cell lines. Increased selectivity and higher potency is therefore a step forward toward establishing MKLP-2 as a potential cancer drug target.  相似文献   
50.
Microtubule (MT) binding accelerates the rate of ATP hydrolysis in kinesin. To understand the underlying mechanism, using charged‐to‐alanine mutational analysis, we identified two independent sites in tubulin, which are critical for kinesin motility, namely, a cluster of negatively charged residues spanning the helix 11–12 (H11–12) loop and H12 of α‐tubulin, and the negatively charged residues in H12 of β‐tubulin. Mutation in the α‐tubulin‐binding site results in a deceleration of ATP hydrolysis (kcat), whereas mutation in the β‐tubulin‐binding site lowers the affinity for MTs (K0.5MT). The residue E415 in α‐tubulin seems to be important for coupling MT binding and ATPase activation, because the mutation at this site results in a drastic reduction in the overall rate of ATP hydrolysis, largely due to a deceleration in the reaction of ADP release. Our results suggest that kinesin binding at a region containing α‐E415 could transmit a signal to the kinesin nucleotide pocket, triggering its conformational change and leading to the release of ADP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号