首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143855篇
  免费   8457篇
  国内免费   9294篇
  2023年   1850篇
  2022年   1904篇
  2021年   3850篇
  2020年   3912篇
  2019年   5845篇
  2018年   4529篇
  2017年   3526篇
  2016年   3881篇
  2015年   5330篇
  2014年   8283篇
  2013年   10887篇
  2012年   6638篇
  2011年   8864篇
  2010年   6606篇
  2009年   7020篇
  2008年   7315篇
  2007年   7529篇
  2006年   6858篇
  2005年   5947篇
  2004年   5153篇
  2003年   4323篇
  2002年   3833篇
  2001年   2817篇
  2000年   2351篇
  1999年   2372篇
  1998年   2264篇
  1997年   1886篇
  1996年   1695篇
  1995年   1860篇
  1994年   1716篇
  1993年   1506篇
  1992年   1554篇
  1991年   1278篇
  1990年   1153篇
  1989年   1079篇
  1988年   1035篇
  1987年   971篇
  1986年   685篇
  1985年   1141篇
  1984年   1594篇
  1983年   1150篇
  1982年   1534篇
  1981年   1109篇
  1980年   1066篇
  1979年   1013篇
  1978年   625篇
  1977年   518篇
  1976年   408篇
  1975年   322篇
  1973年   329篇
排序方式: 共有10000条查询结果,搜索用时 593 毫秒
51.
The effect of cationic, anionic and nonionic detergents on the EPR spectrum of spin-labeled somatostatin has been studied. At detergent concentrations well above the critical micelle concentration, nonionic detergents do not alter the EPR spectrum. Sodium dodecyl sulfate markedly alters both the line height ratio and the hyperfine splitting constant, whilst dodecyltrimethylammonium bromide alters only slightly the hyperfine splitting constant and line height ratio. The somatostatin-sodium dodecyl sulfate complex appeared monodisperse by sedimentation equilibrium with about 17 g bound detergent per g peptide. Circular dichroic and difference spectra of the dodecyl sulfate-somatostatin complex show that the tryptophanyl residue is buried in a nonpolar environment and that the secondary and tertiary structure of the peptide is markedly altered. Sedimentation equilibrium studies suggest that two types of dodecyltrimethylammonium-somatostatin complex exist. One type resembles the dodecyl sulfate-peptide complex, whilst the other appears to include several peptide units with only about one gram bound detergent per gram peptide.  相似文献   
52.
A key intermediate in translocation is an ‘unlocked state’ of the pre‐translocation ribosome in which the P‐site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two‐ and three‐colour smFRET imaging from multiple structural perspectives, EF‐G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF‐G‐bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control.  相似文献   
53.
Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27Kip1 was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCFSkp2 ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCFSkp2 pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability.  相似文献   
54.
55.
Transient receptor potential melastatin 4 (TRPM4) is a broadly expressed Ca2+ activated monovalent cation channel that contributes to the pathophysiology of several diseases.For this study, we generated stable CRISPR/Cas9 TRPM4 knockout (K.O.) cells from the human prostate cancer cell line DU145 and analyzed the cells for changes in cancer hallmark functions. Both TRPM4-K.O. clones demonstrated lower proliferation and viability compared to the parental cells. Migration was also impaired in the TRPM4-K.O. cells. Additionally, analysis of 210 prostate cancer patient tissues demonstrates a positive association between TRPM4 protein expression and local/metastatic progression. Moreover, a decreased adhesion rate was detected in the two K.O. clones compared to DU145 cells.Next, we tested three novel TRPM4 inhibitors with whole-cell patch clamp technique for their potential to block TRPM4 currents. CBA, NBA and LBA partially inhibited TRPM4 currents in DU145 cells. However, none of these inhibitors demonstrated any TRPM4-specific effect in the cellular assays.To evaluate if the observed effect of TRPM4 K.O. on migration, viability, and cell cycle is linked to TRPM4 ion conductivity, we transfected TRPM4-K.O. cells with either TRPM4 wild-type or a dominant-negative mutant, non-permeable to Na+. Our data showed a partial rescue of the viability of cells expressing functional TRPM4, while the pore mutant was not able to rescue this phenotype. For cell cycle distribution, TRPM4 ion conductivity was not essential since TRPM4 wild-type and the pore mutant rescued the phenotype.In conclusion, TRPM4 contributes to viability, migration, cell cycle shift, and adhesion; however, blocking TRPM4 ion conductivity is insufficient to prevent its role in cancer hallmark functions in prostate cancer cells.  相似文献   
56.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   
57.
58.
《Cell》2021,184(22):5670-5685.e23
  1. Download : Download high-res image (175KB)
  2. Download : Download full-size image
  相似文献   
59.
A radioimmunoassay for 3′-iodothyronine has been developed. All iodothyronine analogues (except 3,3′-diiodothyronine) showed very little (0.02% at most) cross-reactivity, and the assay was sensitive to 1 pg 3′-iodothyronine/ tube. We have studied the 5′-deiodination of 3′,5′-diiodothyronine by rat liver microsomal fraction in the presence of dithiothreitol. Production of 3′-iodothyronine at 37°C was found to be linear with time of incubation up to 30 min and with concentration of microsomal protein up to 100 μg/ml. The reaction rate reached a limit on increasing 3′,5′-diiodothyronine concentration to 10 μM. The effect of pH on 3′-iodothyronine production was found to depend on 3′,5′-diiodothyronine concentration. Increasing 3′,5′-diiodothyronine concentration from 0.1 to 10 μM resulted in a shift of the pH optimum from 6–6.5 to 7.5. Similar effects on the 5′-deiodination of 3,3′,5′-triiodothyronine were observed, supporting the hypothesis that these reactions are catalysed by a single enzyme (iodothyronine 5′-deiodinase).  相似文献   
60.
Inflammatory responses mediated by activated microglia play a pivotal role in the pathogenesis of human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorders. Studies on identification of specific targets to control microglia activation and resultant neurotoxic activity are imperative. Increasing evidence indicate that voltage-gated K+ (Kv) channels are involved in the regulation of microglia functionality. In this study, we investigated Kv1.3 channels in the regulation of neurotoxic activity mediated by HIV-1 glycoprotein 120 (gp120)-stimulated rat microglia. Our results showed treatment of microglia with gp120 increased the expression levels of Kv1.3 mRNA and protein. In parallel, whole-cell patch-clamp studies revealed that gp120 enhanced microglia Kv1.3 current, which was blocked by margatoxin, a Kv1.3 blocker. The association of gp120 enhancement of Kv1.3 current with microglia neurotoxicity was demonstrated by experimental results that blocking microglia Kv1.3 attenuated gp120-associated microglia production of neurotoxins and neurotoxicity. Knockdown of Kv1.3 gene by transfection of microglia with Kv1.3-siRNA abrogated gp120-associated microglia neurotoxic activity. Further investigation unraveled an involvement of p38 MAPK in gp120 enhancement of microglia Kv1.3 expression and resultant neurotoxic activity. These results suggest not only a role Kv1.3 may have in gp120-associated microglia neurotoxic activity, but also a potential target for the development of therapeutic strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号