首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   17篇
  国内免费   4篇
  2023年   1篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   10篇
  2017年   7篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
  2012年   6篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   11篇
  2007年   5篇
  2006年   12篇
  2005年   7篇
  2004年   8篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1995年   1篇
排序方式: 共有122条查询结果,搜索用时 680 毫秒
61.
Searching for phylogenetic pattern in biological invasions   总被引:1,自引:1,他引:0  
It has been suggested that alien species with close indigenous relatives in the introduced range may have reduced chances of successful establishment and invasion (Darwin's naturalization hypothesis). Studies trying to test this have in fact been addressing four different hypotheses, and the same data can support some while rejecting others. In this paper, we argue that the phylogenetic pattern will change depending on the spatial and phylogenetic scales considered. Expectations and observations from invasion biology and the study of natural communities are that at the spatial scale relevant to competitive interactions, closely related species will be spatially separated, whereas at the regional scale, species in the same genera or families will tend to co-occur more often than by chance. We also argue that patterns in the relatedness of indigenous and naturalized plants are dependent on the continental/island setting, spatial occupancy levels, and on the group of organisms under scrutiny. Understanding how these factors create a phylogenetic pattern in invasions will help us predict which groups are more likely to invade where, and should contribute to general ecological theory.  相似文献   
62.
Temperate humid grasslands are known to be particularly vulnerable to invasion by alien plant species when grazed by domestic livestock. The Flooding Pampa grasslands in eastern Argentina represent a well-documented case of a regional flora that has been extensively modified by anthropogenic disturbances and massive invasions over recent centuries. Here, we synthesise evidence from region-wide vegetation surveys and long-term exclosure experiments in the Flooding Pampa to examine the response of exotic and native plant richness to environmental heterogeneity, and to evaluate grazing effects on species composition and diversity at landscape and local community scales. Total plant richness showed a unimodal distribution along a composite stress/fertility gradient ranging several plant community types. On average, more exotic species occurred in intermediate fertility habitats that also contained the highest richness of resident native plants. Exotic plant richness was thus positively correlated with native species richness across a broad range of flood-prone grasslands. The notion that native plant diversity decreases invasibility was supported only for a limited range of species-rich communities in habitats where soil salinity stress and flooding were unimportant. We found that grazing promoted exotic plant invasions and generally enhanced community richness, whereas it reduced the compositional and functional heterogeneity of vegetation at the landscape scale. Hence, grazing effects on plant heterogeneity were scale-dependent. In addition, our results show that environmental fluctuations and physical disturbances such as large floods in the pampas may constrain, rather than encourage, exotic species in grazed grasslands.  相似文献   
63.
Montane regions worldwide have experienced relatively low plant invasion rates, a trend attributed to increased climatic severity, low rates of disturbance, and reduced propagule pressure relative to lowlands. Manipulative experiments at elevations above the invasive range of non‐native species can clarify the relative contributions of these mechanisms to montane invasion resistance, yet such experiments are rare. Furthermore, global climate change and land use changes are expected to cause decreases in snowpack and increases in disturbance by fire and forest thinning in montane forests. We examined the importance of these factors in limiting montane invasions using a field transplant experiment above the invasive range of two non‐native lowland shrubs, Scotch broom (Cytisus scoparius) and Spanish broom (Spartium junceum), in the rain–snow transition zone of the Sierra Nevada of California. We tested the effects of canopy closure, prescribed fire, and winter snow depth on demographic transitions of each species. Establishment of both species was most likely at intermediate levels of canopy disturbance, but at this intermediate canopy level, snow depth had negative effects on winter survival of seedlings. We used matrix population models to show that an 86% reduction in winter snowfall would cause a 2.8‐fold increase in population growth rates in Scotch broom and a 3.5‐fold increase in Spanish broom. Fall prescribed fire increased germination rates, but decreased overall population growth rates by reducing plant survival. However, at longer fire return intervals, population recovery between fires is likely to keep growth rates high, especially under low snowpack conditions. Many treatment combinations had positive growth rates despite being above the current invasive range, indicating that propagule pressure, disturbance, and climate can all strongly affect plant invasions in montane regions. We conclude that projected reductions in winter snowpack and increases in forest disturbance are likely to increase the risk of invasion from lower elevations.  相似文献   
64.
Samples issued from intensive sampling in the Netherlands (1992–2001) and from extensive sampling carried out in the context of international campaigns (1998, 2000 and 2001) were revisited. Additional samples from artificial substrates (1992–2003) and other techniques (various periods) were analysed. The combined data provide a global and dynamic view on the Peracarida community of the River Meuse, with the focus on the Amphipoda. Among the recent exotic species found, Crangonyx pseudogracilisis regressing, Dikerogammarus haemobaphesis restricted to the Condroz course of the river, Gammarus tigrinusis restricted to the lowlands and seems to regress, Jaera istriis restricted to the ‘tidal’ Meuse, Chelicorophium curvispinumis still migrating upstream into the Lorraine course without any strong impact on the other amphipod species. After a rapid expansion Dikerogammarus villosushas continued its upstream invasion between 1998 and 2002 at a rate of 30–40 km per year, but no further progression was noticed in 2003. Locally and temporarily the native species (Gammarus fossarum and G. pulex) and naturalized species (G. roeseliand Echinogammarus berilloni)mayhave been excluded by the most recent invaders (mainly D. villosus), but none of the native and naturalized species has disappeared completely. Therefore, the number of amphipod species found in the River Meuse has increased. Moreover, the native and naturalized species keep on dominating the tributaries from which the recent invaders seem to be excluded. A changing Peracarida community structure is observed along the course of the River Meuse: four native or naturalized species inhabit the upstream (Lorraine) course, three invasive species dominate in the middle reach (Ardenne-Condroz zone), one exotic species is housed in the Border Meuse and three or four invasive species dominate the assemblages in the lowlands.  相似文献   
65.

Aim

Darwin's naturalization hypothesis states that dissimilarity to native species may benefit alien species establishment due to empty niches and reduced competition. We here add a new dimension to large‐scale tests of community invasibility, investigating the role that previously established alien species play in facilitating or hindering new invasions in plant communities.

Location

Permanent grasslands across France (including mainland and Corsica), as a receding ecosystem of great conservation importance.

Methods

Focusing on 121 alien plant species occurring in 7,215 vegetation plots, we quantified biotic similarity between new invaders and resident alien species (i.e., alien species with longer residence times) based on phylogenetic and trait distances. Additionally, we calculated distances to native species for each alien species and plot. Using multispecies distribution models, we analysed the influence of these biotic similarity measures and additional covariates on establishment success (presence/absence) of new invaders.

Results

We found that biotic similarity to resident alien species consistently increased establishment success of more recently introduced species. Phylogenetic relatedness to previous invaders had an equally strong positive effect as relatedness to native species. Conversely, trait similarity to natives hindered alien establishment as predicted by Darwin's naturalization hypothesis. These results highlight that various mechanisms may act simultaneously to determine alien establishment success.

Main conclusions

Our results suggest that, with greater similarity among alien species, invasion success increases. Such a pattern may arise either due to actual facilitation among invaders or as a result of weaker competitive interactions among invaders than between native and alien species, leading to an indirect facilitative effect. Alternatively, recent environmental changes (e.g., eutrophication, climate change) may have added new environmental filters. Determining how initial invasions might pave the road for subsequent invasions is crucial for effective multispecies management decisions and contributes a new aspect to our understanding of community assembly.
  相似文献   
66.

Aim

Information about the importance of propagule pressure and habitat invasibility in invasion success of dispersal‐limited species is scarce. We aimed to assess invasiveness of Quercus rubra within stands of 14 tree species, and the effects of distance from propagule source on invasion success, to highlight limiting factors for further application in nature conservation.

Location

Siemianice Experimental Forest—a common garden forest experiment with 14 tree species, western Poland.

Methods

We investigated aboveground biomass, leaf area index and density of Q. rubra natural regeneration within 53 experimental plots, as well as distance from the seed source. We also analysed light availability changes between 2005 and 2015 on plots of each tree species. We used multiple linear regression and variable importance to quantify the effect of each factor.

Results

All factors tested influenced ecological success of Q. rubra. Invasion success decreased with increasing distance from the seed source and decreasing light availability and was higher within stands of pioneer tree species. Leaf area index depended mostly on tree stand species, density depended on distance from the propagule source and biomass depended on both. Light availability explained 7.2%–30.2% of the variance; tree species—from 36.1% to 57.4%; and distance from the propagule source—from 12.4% to 56.7%.

Main conclusions

Tree stand species, light availability and distance from the propagule source influence ecological success of invasive Q. rubra, displaying their importance for spread of this species. These factors are controllable in forest/conservation management and may be used to prevent Q. rubra invasion. Planting late‐successional tree species that cast dense shade, maintaining canopy closure and removing fruiting trees from surrounding more invasible stands may prevent Q. rubra invasion.
  相似文献   
67.
Abstract. Heracleum mantegazzianum, a tall forb from the western Caucasus invaded several different habitats in the Czech Republic. The relation between invasion success and type of recipient habitat was studied in the Slavkovskù les hilly ridge, Czech Republic. The vegetation of 14 habitat types occurring in an area of ca. 25 km2 was analysed using phytosociological relevés, and the invasion success of Heracleum (in terms of number of localities, area covered and proportion of available area occupied) was recorded separately in each of them. Site conditions were expressed indirectly using Ellenberg indicator values. The hypothesis tested was that Heracleum spreads in the majority of vegetation types regardless of the properties of the recipient vegetation. Community invasibility appeared to be affected by site conditions and the composition of the recipient vegetation. The species is not found in acidic habitats. Disturbed habitats with good possibilities of dispersal for Heracleum seeds are more easily invaded. Communities with a higher proportion of phanerophytes and of species with CS (Competitive/Stresstolerating) strategy were more resistant to invasion. The invasion success was bigger in sites with increased possibilities of spread for Heracleum diaspores. Communities invaded by Heracleum had a lower species diversity and a higher indicator value for nitrogen than not-invaded stands. It appears that species contributing to community resistance against invasion of Heracleum, or capable of persisting in Heracleum-invaded stands, have similar ecological requirements but a different life strategy to the invader.  相似文献   
68.
Biological invasion remains a major threat to biodiversity in general and a disruptor to mutualistic interactions in particular. While a number of empirical studies have directly explored the role of invasion in mutualistic pollination networks, a clear picture is yet to emerge and a theoretical model for comprehension still lacking. Here, using an eco‐evolutionary model of bipartite mutualistic networks with trait‐mediated interactions, we explore invader trait, propagule pressure, and network features of recipient community that contribute importantly to the success and impact of an invasion. High level of invasiveness is observed when invader trait differs from those of the community average, and level of interaction generalization equals to that of the community average. Moreover, multiple introductions of invaders with declining propagules enhance invasiveness. Surprisingly, the most successful invader is not always the one having the biggest impact on the recipient community. The network structure of recipient community, such as nestedness and modularity, is not a primary indicator of its invasibility; rather, the invasibility is best correlated with measurements of network stability such as robustness, resilience, and disruptiveness (a measure of evolutionary instability). Our model encompasses more general scenarios than previously studied in predicting invasion success and impact in mutualistic networks, and our results highlight the need for coupling eco‐evolutionary processes to resolve the invasion dilemma.  相似文献   
69.
70.
Whether the success of alien species can be explained by their functional or phylogenetic characteristics remains unresolved because of data limitations, scale issues and weak quantifications of success. Using permanent grasslands across France (50 000 vegetation plots, 2000 species, 130 aliens) and building on the Rabinowitz's classification to quantify spread, we showed that phylogenetic and functional similarities to natives were the most important correlates of invasion success compared to intrinsic functional characteristics and introduction history. Results contrasted between spatial scales and components of invasion success. Widespread and common aliens were similar to co‐occurring natives at coarse scales (indicating environmental filtering), but dissimilar at finer scales (indicating local competition). In contrast, regionally widespread but locally rare aliens showed patterns of competitive exclusion already at coarse scale. Quantifying trait differences between aliens and natives and distinguishing the components of invasion success improved our ability to understand and potentially predict alien spread at multiple scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号