首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12023篇
  免费   924篇
  国内免费   721篇
  2024年   37篇
  2023年   246篇
  2022年   300篇
  2021年   471篇
  2020年   478篇
  2019年   523篇
  2018年   529篇
  2017年   383篇
  2016年   389篇
  2015年   467篇
  2014年   512篇
  2013年   716篇
  2012年   370篇
  2011年   425篇
  2010年   310篇
  2009年   453篇
  2008年   439篇
  2007年   513篇
  2006年   429篇
  2005年   405篇
  2004年   341篇
  2003年   344篇
  2002年   321篇
  2001年   218篇
  2000年   198篇
  1999年   239篇
  1998年   241篇
  1997年   229篇
  1996年   211篇
  1995年   205篇
  1994年   214篇
  1993年   216篇
  1992年   208篇
  1991年   172篇
  1990年   170篇
  1989年   170篇
  1988年   136篇
  1987年   136篇
  1986年   134篇
  1985年   182篇
  1984年   195篇
  1983年   123篇
  1982年   137篇
  1981年   123篇
  1980年   87篇
  1979年   93篇
  1978年   61篇
  1977年   51篇
  1976年   42篇
  1973年   23篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Improvement in photosynthesis per unit leaf area has been difficult to alter by breeding or genetic modification. We report large changes in photosynthesis in Nicotiana tabacum transformed with E. coli genes for the trehalose pathway. Significantly, photosynthetic capacity (CO2 assimilation at varying light and CO2, and quantum yield of PSII electron transport) per unit leaf area and per leaf dry weight were increased in lines of N. tabacum transformed with the E. coli gene otsA, which encodes trehalose phosphate synthase. In contrast, transformation with otsB, which encodes trehalose phosphate phosphatase or Trec, encoding trehalose phosphate hydrolase, produced the opposite effect. Changes in CO2 assimilation per unit leaf area were closely related to the amount and activity of Rubisco, but not to the maximum activities of other Calvin cycle enzymes. Alterations in photosynthesis were associated with trehalose 6-phosphate content rather than trehalose. When growth parameters were determined, a greater photosynthetic capacity did not translate into greater relative growth rate or biomass. This was because photosynthetic capacity was negatively related to leaf area and leaf area ratio. In contrast, relative growth rate and biomass were positively related to leaf area. These results demonstrate a novel means of modifying Rubisco content and photosynthesis, and the complexities of regulation of photosynthesis at the whole plant level, with potential benefits to biomass production through improved leaf area.  相似文献   
992.
Summary Growth and morphogenesis of plant tissues under in vitro conditions are largely influenced by the composition of the culture media. In this study, effects of different inorganic nutrients (ZnSO4 and CuSO4) on callus induction and plant regeneration of Eleusine coracana in vitro were examined. Primary callus induction without ZnSO4 resulted in improved shoot formation upon transfer of calluses to normal regeneration medium. CuSO4 increased to 5x the normal concentration in the media for primary seed callus induction and plant regeneration resulted in a 4-fold increase in number of regnnerated shoots. For long-term callus cultures, 2x KNO3 or 4x Fe-EDTA could replace the requirement for α-naphthaleneacetic acid in the regeneration medium, while 60 μM ZnSO4 or 0.5 μM CuSO4 was optimal for plant regeneration from callus cultures.  相似文献   
993.
Recent advances in cytokinin analysis have made it possible to measure the content of 22 cytokinin metabolites in the tissue of developing tobacco seedlings. Individual types of cytokinins in plants are interconverted to their respective forms by several enzymatic activities (5'-AMP-isopentenyltransferase, adenosine nucleosidase, 5'-nucleotidase, adenosine phosphorylase, adenosine kinase, trans-hydroxylase, zeatin reductase, beta-glucosidase, O-glucosyl transferase, N-glucosyl transferase, cytokinin oxidase). This paper reports modelling and measuring of the dynamics of endogenous cytokinins in tobacco plants grown on media supplemented with isopentenyl adenine (IP), zeatin (Z) and dihydrozeatin riboside (DHZR). Differences in phenotypes generated by the three cytokinins are shown and discussed, and the assumption that substrate concentration drives enzyme kinetics underpinned the construction of a simple mathematical model of cytokinin metabolism in developing seedlings. The model was tested on data obtained from liquid chromatography/tandem mass spectrometry cytokinin measurements on tobacco seedlings grown on Murashige and Skoog agar nutrient medium, and on plants grown in the presence of IP, Z and DHZR. A close match was found between measured and simulated data, especially after a series of iterative parameter searches, in which the parameters were set to obtain the best fit with one of the data sets.  相似文献   
994.
N-Acetyl-l-aspartate (NAA) is an amino acid that is present in the vertebrate brain. Its concentration is one of the highest of all free amino acids and, although NAA is synthesized and stored primarily in neurons, it cannot be hydrolyzed in these cells. Furthermore, neuronal NAA is dynamic and turns over more than once each day by virtue of its continuous efflux, in a regulated intercompartmental cycling via extracellular fluids, between neurons and a second compartment in oligodendrocytes. The metabolism of NAA, between its anabolic compartment in neurons and its catabolic compartment in oligodendrocytes, and its possible physiological role in the brain has been the subject of much speculation. There are two human inborn errors in metabolism of NAA. One is Canavan disease (CD), in which there is a buildup of NAA (hyperacetylaspartia) and associated spongiform leukodystrophy, caused by a lack of aspartoacylase activity. The other is a singular human case of lack of NAA (hypoacetylaspartia), where the enzyme that synthesizes NAA is apparently absent. There are two animal models currently available for studies of CD. One is a rat with a natural deletion of the catabolic enzyme, and the other a gene knockout mouse. In addition to the presence of NAA in neurons, its prominence in 1H nuclear magnetic resonance spectroscopic studies has led to its wide use in diagnostic human medicine as both an indicator of brain pathology and of disease progression in a variety of CNS diseases. In this review, various hypotheses regarding the metabolism of NAA and its possible role in the CNS are evaluated. Based on this analysis, it is concluded that although NAA may have several functions in the CNS, an important role of the NAA intercompartmental system is osmoregulatory, and in this role it may be the primary mechanism for the removal of intracellular water, against a water gradient, from myelinated neurons.  相似文献   
995.
Numerous lines of evidence place signal transduction cascades at the core of many processes having a direct role in neurodegeneration and associated disorders. Key players include neurotransmitters, growth factors, cytokines, hormones, and even binding and targeting proteins. Indeed, abnormal phosphorylation of key control proteins has been detected in many cases and is thought to underlie the associated cellular dysfunctions. Several signaling cascades have been implicated, affecting processes as varied as protein processing, protein expression, and subcellular protein localization, among others. The Alzheimer's amyloid precursor protein (APP) is a phosphoprotein, with well-defined phosphorylation sites but whose function is not clearly understood. The factors and pathways regulating the processing of APP have been particularly elusive, both in normal ageing and the Alzheimer's disease (AD) condition. Not surprisingly, the physiological function(s) of the protein remain(s) to be elucidated, although many hypotheses have been advanced. Nonetheless, considerable data has accumulated over the last decade, placing APP in key positions to be modulated both directly and indirectly by phosphorylation and phosphorylation-dependent events. The pathological end product of APP processing is the main proteinaceous component of the hallmark senile plaques found in the brains of AD patients, that is, a toxic peptide termed A. In this minireview we address the importance of phosphorylation and signal transduction cascades in relation to APP processing and A production. The possible use of the identified molecular alterations as therapeutic targets is also addressed.  相似文献   
996.
Radioisotope techniques were used to compare photosynthetic CO2 fixation, activities of carboxylating enzymes, and the composition of photosynthates in 42 species of aquatic plants (emergent, floating, and submersed hydrophytes) collected from rivers Sysert' and Iset' in Sverdlovsk oblast (Russia). The submersed leaves, in comparison with the emergent and floating leaves, featured lower rates of potential photosynthesis (by 2.2 mg CO2/(dm2 h) on average), low content of the fraction I protein, and low activity of Rubisco and phosphoenolpyruvate carboxylase (PEPC). The averaged activities of Rubisco and PEPC were diminished in submersed leaves by 10 and 1 mg/(dm2 h), respectively. Different hydrophyte groups showed similar composition of assimilates accumulated after 5-min photosynthesis and did not differ in this respect from terrestrial plants. However, the incorporation of 14C into sucrose and starch in submersed leaves (30 and 9% of total labeling, respectively) was lower than in emergent and floating leaves (45 and 15%, respectively). At the same time, the incorporation of 14C into C4 acids (malate and aspartate) was 1.5 times higher in submersed leaves than in other leaf types. Analysis of leaf differentiation, the Rubisco/PEPC activity ratio, the PEPC activity, and the composition of primary photosynthates in the pulse–chase experiments revealed no evidence of the C4 effect in the submersed hydrophytes examined. The adaptation of hydatophytes to specific conditions of an aquatic environment was structurally manifested in the reduction (by a factor of 3–5) in the number of chloroplasts per 1 cm2 leaf area. This small number of chloroplasts was responsible for low photosynthetic rates in submersed leaves, although metabolic activities of individual chloroplasts were similar for all three hydrophyte groups.  相似文献   
997.
Candida tropicalis enoyl thioester reductase Etr1p and the Saccharomyces cerevisiae homologue Mrf1p catalyse the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis (FAS). Unlike prokaryotic enoyl thioester reductases (ETRs), which belong to the short-chain dehydrogenases/reductases (SDR), Etr1p and Mrf1p represent structurally distinguishable ETRs that belong to the medium-chain dehydrogenases/reductases (MDR) superfamily, indicating independent origin of two separate classes of ETRs. The crystal structures of Etr1p, the Etr1p-NADPH complex and the Etr1Y79Np mutant were refined to 1.70A, 2.25A and 2.60A resolution, respectively. The native fold of Etr1p was maintained in Etr1Y79Np, but the mutant had only 0.1% of Etr1p catalytic activity remaining and failed to rescue the respiratory deficient phenotype of the mrf1Delta strain. Mutagenesis of Tyr73 in Mrf1p, corresponding to Tyr79 in Etr1p, produced similar results. Our data indicate that the mitochondrial reductase activity is indispensable for respiratory function in yeast, emphasizing the significance of Mrf1p (Etr1p) and mitochondrial FAS for the integrity of the respiratory competent organelle.  相似文献   
998.
The degree of sequence conservation of arginine repressor proteins (ArgR) and of the cognate operators (tandem pairs of 18 bp imperfect palindromes, ARG boxes) in evolutionarily distant bacteria is unusually high, and the global mechanism of ArgR-mediated regulation appears to be similar. However, here we demonstrate that the arginine repressor from the hyperthermophilic bacterium Thermotoga neapolitana (ArgR(Tn)) exhibits characteristics that clearly distinguish this regulator from the well-studied homologues from Escherichia coli, Bacillus subtilis and B.stearothermophilus. A high-resolution contact map of ArgR(Tn) binding to the operator of the biosynthetic argGHCJBD operon of Thermotoga maritima indicates that ArgR(Tn) establishes all of its strong contacts with a single ARG box-like sequence of the operator only. Protein array and electrophoretic mobility-shift data demonstrate that ArgR(Tn) has a remarkable capacity to bind to arginine operators from Gram-negative and Gram-positive bacteria, and to single ARG box-bearing targets. Moreover, the overall effect of L-arginine on the apparent K(d) of ArgR(Tn) binding to various cognate and heterologous operator fragments was minor with respect to that observed with diverse bacterial arginine repressors. We demonstrate that this unusual behaviour for an ArgR protein can, to a large extent, be ascribed to the presence of a serine residue at position 107 of ArgR(Tn), instead of the highly conserved glutamine that is involved in arginine binding in the E.coli repressor. Consistent with these results, ArR(Tn) was found to behave as a superrepressor in E.coli, inhibiting growth in minimal medium, even supplemented with arginine, whereas similar constructs bearing the S107Q mutant allele did not inhibit growth. We assume that ArgR(Tn), owing to its broad target specificity and its ability to bind single ARG box sequences, might play a more general regulatory role in Thermotoga  相似文献   
999.
1000.
Adenosine plays a role in promoting sleep, an effect that is thought to be mediated in the basal forebrain. Adenosine levels vary in this region with prolonged wakefulness in a unique way. The basis for this is unknown. We examined, in rats, the activity of the major metabolic enzymes for adenosine - adenosine deaminase, adenosine kinase, ecto- and cytosolic 5'-nucleotidase - in sleep/wake regulatory regions as well as cerebral cortex, and how the activity varies across the day and with sleep deprivation. There were robust spatial differences for the activity of adenosine deaminase, adenosine kinase, and cytosolic and ecto-5'-nucleotidase. However, the basal forebrain was not different from other sleep/wake regulatory regions apart from the tuberomammillary nucleus. All adenosine metabolic enzymes exhibited diurnal variations in their activity, albeit not in all brain regions. Activity of adenosine deaminase increased during the active period in the ventrolateral pre-optic area but decreased significantly in the basal forebrain. Enzymatic activity of adenosine kinase and cytosolic-5'-nucleotidase was higher during the active period in all brain regions tested. However, the activity of ecto-5'-nucleotidase was augmented during the active period only in the cerebral cortex. This diurnal variation may play a role in the regulation of adenosine in relationship to sleep and wakefulness across the day. In contrast, we found no changes specifically with sleep deprivation in the activity of any enzyme in any brain region. Thus, changes in adenosine with sleep deprivation are not a consequence of alterations in adenosine enzyme activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号