首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The content of chlorophylls (Chls) and carotenoids was studied in the leaves of 42 species of boreal aquatic plants with different degree of submergence (emergent, floating, and submerged) and isopalisade, dorsoventral, and homogenous types of mesophyll structure. Hydrophytes were shown to have a low Chl content (1–2 mg/g fr wt) and low Chls/carotenoids ratio (2.3–3.5) as compared to terrestrial plants. The pigment content per dry wt unit and unit leaf area was dependent on the type of mesophyll structure. It was a consequence of the changes in the parameters of leaf mesophyll structure characterizing the density of photosynthetic elements. In a sequence emergent floating submerged forms, the content of Chls and carotenoids decreased, and the photosynthetic capacity decreased due to a reduction in the chloroplast number per unit leaf area. Adaptation of submerged leaves to low illumination and slow CO2 diffusion changed the functional properties of chloroplasts. An increase in the pigment content in the chloroplasts of submerged leaves (7 × 10–9 mg Chl, 2 × 10–9 mg carotenoids) as compared to emergent and floating leaves was accompanied by a decline in the photosynthetic capacity per Chl comprising 1.6 mg CO2/(mg Chl h) versus 3.9 and 3.8 mg CO2/(mg Chl h) in emergent and floating leaves, respectively.  相似文献   

2.
The responses of photosynthesis, Rubisco activity, Rubisco protein, leaf carbohydrates and total soluble protein to three carbon dioxide treatments were studied in winter wheat [Triticum aestivum (L.)] and barley [Hordeum vulgare (L.)]. Barley and wheat plants were grown in small field plots during 1995 and 1996 in clear, acrylic chambers (1.2–2.4 m2) and were provided with continuous carbon dioxide fertilization at concentrations of 350, 525 and 700 mol mol–1. Photosynthetic rates of barley penultimate leaves and wheat flag leaves measured at growth carbon dioxide concentrations decreased with leaf age in all three CO2 treatments during 1995 and 1996. Photosynthetic acclimation to elevated CO2 was observed on seven of eight measurement dates for barley and ten of eleven measurement dates for wheat over both years. Initial Rubisco activity, total soluble protein and Rubisco protein in barley penultimate leaves and wheat flag leaves also decreased with leaf age. Total Rubisco activity was not used because of enzyme degradation. There was a significant CO2 treatment effect on initial Rubisco activity, total soluble protein and Rubisco protein for wheat in 1995 and 1996 and for barley in 1995. Responses of barley penultimate leaf Rubisco activity and leaf protein concentrations to elevated carbon dioxide were nonsignificant in 1996. A significant CO2 treatment effect also was detected when means of Rubisco activity, soluble protein and Rubisco protein for wheat flag leaves were combined over harvests and years. These three flag leaf parameters were not significantly different in the 350 and 525 mol mol–1 CO2 treatments but were decreased during growth in 700 mol mol–1 CO2 relative to the other two CO2 treatments. Ratios of photosynthesis at 700 and 350 mol mol–1 were compared to ratios of Rubisco activity at 700 and 350 mol mol–1 using wheat flag leaf data from 1995 and 1996. Regression analysis of these data were linear [y = 0.586 + 1.103t x (r2 = 0.432)] and were significant at P 0.05. This result indicated that photosynthetic acclimation was positively correlated with changes of initial Rubisco activity in wheat flag leaves in response to CO2 enrichment. Effects of elevated CO2 on wheat leaf proteins during 1995 and 1996 and on barley during 1995 were consistent with an acceleration of senescence.  相似文献   

3.
The structure of photosynthetic elements was investigated in leaves of 42 boreal plant species featuring different degrees of submergence (helophytes, neustophytes, and hydatophytes). The mesophyll structure types were identified for all these species. Chlorenchyma tissues and phototrophic cells were quantitatively described by such characteristics as the sizes of cells and chloroplasts in the mesophyll and epidermis, the abundance of cells and chloroplasts in these tissues, the total surface area of cells and chloroplasts per unit leaf area, the number of plastids per cell, etc. The hydrophytes typically had thick leaves (200–350 m) with a well-developed aerenchyma; their specific density per unit area (100–200 mg/dm2) was lower than in terrestrial plants. Mesophyll cells in aquatic plants occupied a larger volume (5–20 × 103m3) than epidermal cells (1–15 × 103m3). The number of mesophyll cells per unit leaf area was nearly 1.5 times higher than that of epidermal cells. Chloroplasts were present in the epidermis of almost all species, including emergent leaves, but the ratio of the chloroplast total number to the number of all plastids varied depending on the degree of leaf submergence. The total number of plastids per unit leaf area (2–6 × 106/cm2) and the surface of chloroplasts per unit leaf area (2–6 cm2/cm2) were lower in hydrophytes than in terrestrial plants from climatically similar habitats. The functional relations between mesophyll parameters were similar for hydrophytes and terrestrial plants (a positive correlation between the leaf weight per unit area, leaf thickness, and the number of mesophyll cells per unit leaf area), although no correlation was found in hydrophytes between the volume of mesophyll cells and the leaf thickness. Phototrophic tissues in aquatic plants contributed a larger fraction to the leaf weight than in terrestrial plants, because the mechanical tissues were less developed in hydrophytes. The CO2assimilation rates by leaves were lower in hydrophytes than in terrestrial plants, because the total surface area of chloroplasts per unit leaf area is comparatively small in hydrophytes, which reduces the conductivity for carbon dioxide diffusion towards the carboxylation sites.  相似文献   

4.
Transgenic tobacco (Nicotiana tabacum L. cv. W38) with an antisense gene directed against the mRNA of the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit was used to determine the kinetic properties of Rubisco in vivo. The leaves of these plants contained only 34% as much Rubisco as those of the wild type, but other photosynthetic components were not significantly affected. Consequently, the rate of CO2 assimilation by the antisense plants was limited by Rubisco activity over a wide range of CO2 partial pressures. Unlike in the wild-type leaves, where the rate of regeneration of ribulose bisphosphate limited CO2 assimilation at intercellular partial pressures above 400 ubar, photosynthesis in the leaves of the antisense plants responded hyperbolically to CO2, allowing the kinetic parameters of Rubisco in vivo to be inferred. We calculated a maximal catalytic turnover rate, kcat, of 3.5+0.2 mol CO2·(mol sites)–1·s–1 at 25° C in vivo. By comparison, we measured a value of 2.9 mol CO2·(mol sites)–1·–1 in vitro with leaf extracts. To estimate the Michaelis-Menten constants for CO2 and O2, the rate of CO2 assimilation was measured at 25° C at different intercellular partial pressures of CO2 and O2. These measurements were combined with carbon-isotope analysis (13C/12C) of CO2 in the air passing over the leaf to estimate the conductance for transfer of CO2 from the substomatal cavities to the sites of carboxylation (0.3 mol·m–2·s–1·bar–1) and thus the partial pressure of CO2 at the sites of carboxylation. The calculated Michaelis-Menten constants for CO2 and O2 were 259 ±57 bar (8.6±1.9M) and 179 mbar (226 M), respectively, and the effective Michaelis-Menten constant for CO2 in 200 mbar O2 was 549 bar (18.3 M). From measurements of the photocompensation point (* = 38.6 ubar) we estimated Rubisco's relative specificity for CO2, as opposed to O2 to be 97.5 in vivo. These values were dependent on the size of the estimated CO2-transfer conductance.Abbreviations and Symbols A CO2-assimilation rate - gw conductance for CO2 transfer from the substomatal cavities to the sites of carboxylation - Kc, Ko Michaelis-Menten constants for carboxylation, oxygenation of Rubisco - kcat Vcmax/[active site] - O partial pressure of O2 at the site of carboxylation - pc partial pressure of CO2 at the site of carboxylation - pi intercellular CO2 partial pressure - Rd day respiration (non-photorespiratory CO2 evolution) - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - Sc/o relative specificity factor for Rubisco - SSu small subunit of Rubisco - Vcmax, Vomax maximum rates of Rubisco carboxylation, oxygenation - * partial pressure of CO2 in the chloroplast at which photorespiratory CO2 evolution equals the rate of carboxylation  相似文献   

5.
Summary Activated carboxylase activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), as well as photosynthetic rates were measured for 42 species of freshwater and marine macrophytes. While the carboxylase activity varied greatly among the species investigated (0.2–12.5 mol CO2 mg–1 chlorophyll min–1), the submersed freshwater plants showed significantly lower activities than emergent, floating leaved or secondary submersed forms. The variability in photosynthetic rates correlated with the carboxylase activity only for the marine macroalgae, and their photosynthesis to carboxylase activity ratios were close to 1. These plants also had a consistently high inorganic carbon transport capability, and it is suggested that ribulose-1,5-bisphosphate carboxylase/oxygenase activity is an important internal factor regulating the photosynthetic capacity within this plant group where, apparently, the internal CO2 concentration is high and photorespiration is suppressed. Among the freshwater forms, it appears that their much lower inorganic carbon transport ability, rather than their carboxylase activity, limits the photosynthetic process.  相似文献   

6.
Comparative 14CO2 pulse-12CO2 chase studies performed at CO2 compensation ()-versus air-concentrations of CO2 demonstrated a four-to eightfold increase in assimilation of 14CO2 into the C4 acids malate and aspartate by leaves of the C3-C4 intermediate species Panicum milioides Nees ex Trin., P. decipiens Nees ex Trin., Moricandia arvensis (L.) DC., and M. spinosa Pomel at . Specifically, the distribution of 14C in malate and aspartate following a 10-s pulse with 14CO2 increases from 2% to 17% (P. milioides) and 4% to 16% (M. arvensis) when leaves are illuminated at the CO2 compensation concentration (20 l CO2/l, 21% O2) versus air (340 l CO2/l, 21% O2). Chasing recently incorporated 14C for up to 5 min with 12CO2 failed to show any substantial turnover of label in the C4 acids or in carbon-4 of malate. The C4-acid labeling patterns of leaves of the closely related C3 species, P. laxum Sw. and M. moricandioides (Boiss.) Heywood, were found to be relatively unresponsive to changes in pCO2 from air to . These data demonstrate that the C3-C4 intermediate species of Panicum and Moricandia possess an inherently greater capacity for CO2 assimilation via phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) at the CO2 compensation concentration than closely related C3 species. However, even at , CO2 fixation by PEP carboxylase is minor compared to that via ribulosebisphosphate carboxylase (EC 4.1.1.39) and the C3 cycle, and it is, therefore, unlikely to contribute in a major way to the mechanism(s) facilitating reduced photorespiration in the C3-C4 intermediate species of Panicum and Moricandia.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - PEP phosphoenolpyruvate - CO2 compensation concentration - 3PGA 3-phosphoglycerate - SuP sugar monophosphates - SuP2 sugar bisphosphates Published as Paper No. 8249, Journal Series, Nebraska Agricultural Research Division  相似文献   

7.
W. R. Mills  K. W. Joy 《Planta》1980,148(1):75-83
A procedure is described for the rapid (<5 min) isolation of purified, physiologically active chloroplasts from Pisum sativum L. Mitochondrial and microbody contamination is substantially reduced and broken chloroplasts are excluded by washing through a layer containing a treated silica sol. On average the preparations contain 93% intact chloroplasts and show high rates of 14CO2 fixation and CO2-dependent O2 evolution (over 100 mol/mg chlorophyll(chl)/h); they are also able to carry out light-driven incorporation of leucine into protein (4 nmol/mg chl/h). The amino-acid contents of chloroplasts prepared from leaves and from leaf protoplasts have been determined. Asparagine is the most abundant amino acid in the pea chloroplast (>240 nmol/mg chl), even thought it is proportionately lower in the chloroplast relative to the rest of the cell. The chloroplasts contain about 20% of many of the amino acids of the cell, but for individual amino acids the percentage in the chloroplast ranges from 8 to 40% of the cell total. Glutamic acid, glutamine and aspartic acid are enriched in the chloroplasts, while asparagine, homoserine and -(isoxazolin-5-one-2-yl)-alanine are relatively lower. Leakage of amino acids from the chloroplast during preparation or repeated washing was ca. 20%. Some differences exist between the amino-acid composition of chloroplasts isolated from intact leaves and from protoplasts. In particular, -aminobutyric acid accumulates to high levels, while homoserine and glutamic acid decrease, during protoplast formation and breakage.  相似文献   

8.
R. Haas  H. P. Siebertz  K. Wrage  E. Heinz 《Planta》1980,148(3):238-244
Spinach chloroplasts were purified on gradients of Percoll which preserved envelope impermeability and CO2-dependent oxygen evolution in the light. Application of 35SO4 to purified chloroplasts resulted in a light-dependent labeling of a lipid component which was indentified as sulfoquinovosyl diacylglycerol. Fractionation of chloroplasts showed that after 5 min of labeling most of the newly synthesized sulfolipid was present in thylakoids. Only a small percentage was recovered from the envelopes. Molecular species from envelopes and thylakoids were identical. The molecular species did not change during incubation times ranging from 5 min up to 4.5 h. Mesophyll protoplasts from 35SO4-labeled oat primary leaves were gently disrupted and separated into organelles by sucrose gradient centrifugation. Labeled sulfolipid was located almost exclusively in the chloroplasts. This, in combination with the experiments carried out with isolated chloroplasts, indicates that the final assembly steps in the biosynthesis of sulfolipid are confined to the chloroplasts.  相似文献   

9.
The cassava plant, Manihot esculenta, grows exceptionally well in low fertility and drought prone environments, but the mechanisms that allow this growth are unknown. Earlier, and sometimes contradictory, work speculated about the presence of a C4-type photosynthesis in cassava leaves. In the present work we found no evidence for a C4 metabolism in mature attached cassava leaves as indicated i) by the low, 2 to 8%, incorporation of 14CO2 into C4 organic acids in short time periods, 10 s, and the lack of 14C transfer from C4 acids to other compounds in 12CO2, ii) by the lack of C4 enzyme activity changes during leaf development and the inability to detect C4 acid decarboxylases, and iii) by leaf CO2 compensation values between 49 and 65 l of CO2 1–1 and by other infrared gas exchange photosynthetic measurements. It is concluded that the leaf biochemistry of cassava follows the C3 pathway of photosynthesis with no indication of a C3-C4 mechanism.However, cassava leaves exhibit several novel characteristics. Attached leaves have the ability to effectively partition carbon into sucrose with nearly 45% of the label in sucrose in about one min of 14CO2 photosynthesis, contrasting with 34% in soybean (C3) and 25% in pigweed (C4). Cassava leaves displayed a strong preference for the synthesis of sucrose versus starch. Field grown cassava leaves exhibited high rates of photosynthesis and curvilinear responses to increasing sunlight irradiances with a tendency to saturate only at high irradiances, above 1500 mol m–2 s–1. Morphologically, the cassava leaf has papillose epidermal cells on its lower mesophyll surface that form fence-like arrangements encircling guard cells. It is proposed that the active synthesis of sugars has osmotic functions in the cassava plant and that the papillose epidermal cells function to maintain a healthy leaf water status in various environments.Abbreviations ADP adenosine diphosphate - Asp aspartate - BSA bovine serum albumin - CoA coenzyme A - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - FBP fructose-1,6-biphosphate - Gly glycine - HEPES N-2-hydroxyethylpiperazine-N-2-ethansulfonic acid - Mal malate - NAD nicotinamide adenine dinucleotide (oxidized form) - NADH nicotinamide adenine dinucleotide (reduced form) - NADP nicotinamide adenine dinucleotide phosphate (oxidized form) - PAR photosynthetic active radiation (400–700 nm) - PEP phosphenolpyruvate carboxylase - p-FBPase plastid fructose-1,6-biphosphatase - PGA 3-phosphoglyceric acid - PMSF phenylmethylsulfonyl fluoride - PVP polyvinylpyrrolidone - Rubisco ribulose-1,5-biphosphate carboxylase/oxygenase - RuBP ribulose-1,5-biphosphate - Ser serine - sugar-P sugar-phosphates  相似文献   

10.

Background and Aims

Cleomaceae is one of 19 angiosperm families in which C4 photosynthesis has been reported. The aim of the study was to determine the type, and diversity, of structural and functional forms of C4 in genus Cleome.

Methods

Plants of Cleome species were grown from seeds, and leaves were subjected to carbon isotope analysis, light and scanning electron microscopy, western blot analysis of proteins, and in situ immunolocalization for ribulose bisphosphate carboxylase oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC).

Key Results

Three species with C4-type carbon isotope values occurring in separate lineages in the genus (Cleome angustifolia, C. gynandra and C. oxalidea) were shown to have features of C4 photosynthesis in leaves and cotyledons. Immunolocalization studies show that PEPC is localized in mesophyll (M) cells and Rubisco is selectively localized in bundle sheath (BS) cells in leaves and cotyledons, characteristic of species with Kranz anatomy. Analyses of leaves for key photosynthetic enzymes show they have high expression of markers for the C4 cycle (compared with the C3–C4 intermediate C. paradoxa and the C3 species C. africana). All three are biochemically NAD-malic enzyme sub-type, with higher granal development in BS than in M chloroplasts, characteristic of this biochemical sub-type. Cleome gynandra and C. oxalidea have atriplicoid-type Kranz anatomy with multiple simple Kranz units around individual veins. However, C. angustifolia anatomy is represented by a double layer of concentric chlorenchyma forming a single compound Kranz unit by surrounding all the vascular bundles and water storage cells.

Conclusions

NAD-malic enzyme-type C4 photosynthesis evolved multiple times in the family Cleomaceae, twice with atriplicoid-type anatomy in compound leaves having flat, broad leaflets in the pantropical species C. gynandra and the Australian species C. oxalidea, and once by forming a single Kranz unit in compound leaves with semi-terete leaflets in the African species C. angustifolia. The leaf morphology of C. angustifolia, which is similar to that of the sister, C3–C4 intermediate African species C. paradoxa, suggests adaptation of this lineage to arid environments, which is supported by biogeographical information.  相似文献   

11.
Onion (Allium cepa L.) plants were examined to determine the photosynthetic role of CO2 that accumulates within their leaf cavities. Leaf cavity CO2 concentrations ranged from 2250 L L–1 near the leaf base to below atmospheric (<350 L L–1) near the leaf tip at midday. There was a daily fluctuation in the leaf cavity CO2 concentrations with minimum values near midday and maximum values at night. Conductance to CO2 from the leaf cavity ranged from 24 to 202 mol m–2 s–1 and was even lower for membranes of bulb scales. The capacity for onion leaves to recycle leaf cavity CO2 was poor, only 0.2 to 2.2% of leaf photosynthesis based either on measured CO2 concentrations and conductance values or as measured directly by 14CO2 labeling experiments. The photosynthetic responses to CO2 and O2 were measured to determine whether onion leaves exhibited a typical C3-type response. A linear increase in CO2 uptake was observed in intact leaves up to 315 L L–1 of external CO2 and, at this external CO2 concentration, uptake was inhibited 35.4±0.9% by 210 mL L–1 O2 compared to 20 mL L–1 O2. Scanning electron micrographs of the leaf cavity wall revealed degenerated tissue covered by a membrane. Onion leaf cavity membranes apparently are highly impermeable to CO2 and greatly restrict the refixation of leaf cavity CO2 by photosynthetic tissue.Abbreviations Ca external CO2 concentration - Ci intercellular CO2 concentration - CO2 compensation concentration - PPFR photosynthetic photon fluence rate  相似文献   

12.
Chloroplasts with high rates of photosynthetic O2 evolution (up to 120 mol O2· (mg Chl)-1·h-1 compared with 130 mol O2· (mg Chl)-1·h-1 of whole cells) were isolated from Chlamydomonas reinhardtii cells grown in high and low CO2 concentrations using autolysine-digitonin treatment. At 25° C and pH=7.8, no O2 uptake could be observed in the dark by high- and low-CO2 adapted chloroplasts. Light saturation of photosynthetic net oxygen evolution was reached at 800 mol photons·m-2·s-1 for high- and low-CO2 adapted chloroplasts, a value which was almost identical to that observed for whole cells. Dissolved inorganic carbon (DIC) saturation of photosynthesis was reached between 200–300 M for low-CO2 adapted chloroplasts, whereas high-CO2 adapted chloroplasts were not saturated even at 700 M DIC. The concentrations of DIC required to reach half-saturated rates of net O2 evolution (Km(DIC)) was 31.1 and 156 M DIC for low- and high-CO2 adapted chloroplasts, respectively. These results demonstrate that the CO2 concentration provided during growth influenced the photosynthetic characteristics at the whole cell as well as at the chloroplast level.Abbreviations Chl chlorophyll - DIC dissolved inorganic carbon - Km(DIC) coneentration of dissolved inorganic carbon required for the rate of half maximal net O2 evolution - PFR photon fluence rate - SPGM silicasol-PVP-gradient medium  相似文献   

13.
Phosphorus-deficient spinach plants were grown by transferring them to nutrient solutions without PO4. Photosynthetic rates were measured at a range of intercellular CO2 partial pressures from 50–500 bar and then the leaves were freeze-clamped in situ to measure ribulose bisphosphate carboxylase (Rubisco) activity and metabolite concentrations. Compared with control leaves, deficient leaves had significantly lower photosynthetic rates, percentage activation of Rubisco, and amounts of ribulose bisphosphate and 3-phosphoglycerate at all CO2 partial pressures. After feeding 10 mM PO4 to the petioles of detached deficient leaves, all these measurements increased within 2 hours. At atmospheric CO2 partial pressure the photosynthetic rate was stimulated in 19 mbar O2 compared with 200 mbar. At higher CO2 partial pressures this stimulation was less but the percentage stimulation in deficient leaves was no different from controls in either CO2 partial pressure. It was concluded that phosphorus deficiency affects both Rubisco activity and the capacity for ribulose bisphosphate regeneration, and possible causes are discussed.Abbreviations A CO2 assimilation rate - Ci intercellular CO2 partial pressure - PGA 3-phosphoglycerate - RuP2 ribulose 1,5-bisphosphate - Rubisco RuP2 carboxylase/oxygenase  相似文献   

14.
Dry weight and Relative Growth Rate of Lemna gibba were significantly increased by CO2 enrichment up to 6000 l CO2 l–1. This high CO2 optimum for growth is probably due to the presence of nonfunctional stomata. The response to high CO2 was less or absent following four days growth in 2% O2. The Leaf Area Ratio decreased in response to CO2 enrichment as a result of an increase in dry weight per frond. Photosynthetic rate was increased by CO2 enrichment up to 1500 l CO2 l–1 during measurement, showing only small increases with further CO2 enrichment up to 5000 l CO2 l–1 at a photon flux density of 210 mol m–2 s–1 and small decreases at 2000 mol m–1 s–1. The actual rate of photosynthesis of those plants cultivated at high CO2 levels, however, was less than the air grown plants. The response of photosynthesis to O2 indicated that the enhancement of growth and photosynthesis by CO2 enrichment was a result of decreased photorespiration. Plants cultivated in low O2 produced abnormal morphological features and after a short time showed a reduction in growth.  相似文献   

15.
Inoculation of sugar mill by-products compost with N2-fixing bacteria may improve its quality by increasing total N and available P. Compost was inoculated with Azotobacter vinelandii(ATCC 478), Beijerinckia derxii (ATCC 49361), and Azospirillumsp. TS8, each alone and all three together. Numbers of all N2-fixing bacteria in compost declined from an initial population of 5×105cellsg–1 during incubation. The population of Azotobacter declined to approximately 2×102cellsg–1 and the population of Beijerinckia and Azospirillum declined to approximately 9×103 and 3.5×104cellsg–1 respectively, at day 50. Inoculation with N2-fixing bacteria increased acetylene reduction, total N by 6–16 and available P by 25–30% in comparison to the uninoculated control. Increasing the N content and P availability of compost increases its value and there may be additional benefit from providing N2 fixing bacteria.  相似文献   

16.
The light-dependent modulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was studied in two species: Phaseolus vulgaris L., which has high levels of the inhibitor of Rubisco activity, carboxyarabinitol 1-phosphate (CA1P), in the dark, and Chenopodium album L., which has little CA1P. In both species, the ratio of initial to fully-activated Rubisco activity declined by 40–50% within 60 min of a reduction in light from high a photosynthetic photon flux density (PPFD; >700 mol · m–2 · s–1) to a low PPFD (65 ± 15 mol · m–2 · s–1) or to darkness, indicating that decarbamylation of Rubisco is substantially involved in the initial regulatory response of Rubisco to a reduction in PPFD, even in species with potentially extensive CA1P inhibition. Total Rubisco activity was unaffected by PPFD in C. album, and prolonged exposure (2–6 h) to low light or darkness was accompanied by a slow decline in the activity ratio of this species. This indicates that the carbamylation state of Rubisco from C. album gradually declines for hours after the large initial drop in the first 60 min following light reduction. In P. vulgaris, the total activity of Rubisco declined by 10–30% within 1 h after a reduction in PPFD to below 100 mol · m–2 · s–1, indicating CA1P-binding contributes significantly to the reduction of Rubisco capacity during this period, but to a lesser extent than decarbamylation. With continued exposure of P. vulgaris leaves to very low PPFDs (< 30 mol · m–2 · s–1), the total activity of Rubisco declined steadily so that after 6–6.5 h of exposure to very low light or darkness, it was only 10–20% of the high-light value. These results indicate that while decarbamylation is more prominent in the initial regulatory response of Rubisco to a reduction in PPFD in P. vulgaris, binding of CA1P increases over time and after a few hours dominates the regulation of Rubisco activity in darkness and at very low PPFDs.Abbreviations CA1P 2-carboxyarabinitol 1-phosphate - CABP 2-carboxyarabinitol 1,5-bisphosphate - kcat substrate-saturated turnover rate of fully carbamylated enzyme - PPFD photosynthetically active photon flux density (400–700 nm) - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate  相似文献   

17.
The development of soybean leaves grown at fluctuating photon flux density between 100 and 1500M m-2s-1 with a period of 160 sec were compared to leaves developed under continuous light with the same mean photon flux density. Number of epidermal cells and stomata, leaf area and specific leaf weight were not affected by the periodic fluctuation of photon flux density. Chloroplastic pigment concentration and chlorophyll fluorescence reveal some photoinhibitory effects of the high photon flux density phase. Stomatal and internal CO2 conductance and the quantum yield were not affected by the light regime. In contrast ribulose 1.5 bisphosphate carboxylase/oxygenase activity before in vitro activation by CO2 and Mg++ was stimulated by the periodic illumination whereas the total amount of the enzyme and the internal leaf CO2 conductance remained steady. In conclusion, there was no major difference between leaves of plant grown either under a steady or under a periodic fluctuation of the photon flux density except some photoinhibitory symptoms under fluctuating illumination, and a higher in vivo level of activation of the Rubisco.  相似文献   

18.
There was no discernible effect after incubating recombinant Anabaena Rubisco and carboxyarabinitol 1-phosphate with the product of the Anabaena rca gene. Since the unactivated cyanobacterial Rubisco is not readily inhibited by ribulose 1,5-bisphosphate and fallover is not observed, a genetic basis for the function of the Rubisco activase-like gene (rca) was sought. The monocistronic rca gene was inactivated in vivo and resulting mutant strains of A. variabilis were found to be incapable of synthesizing immunologically detected RCA protein. The requirement for the product of the rca gene in the light was further examined by measuring Rubisco activity in permeabilized whole cells of wild-type and rca mutant strains at different light intensities. In a 1% CO2-air atmosphere, inactivation of rca reduced the ability of A. variabilis to elevate Rubisco activity under high light (73 mol quanta m–2 s–1), but had little effect under low light (8 mol m–2 s–1). For air-grown cultures, differences in the rates exhibited by the wild-type and rca mutant to fully activate Rubisco during a whole-cell assay were enhanced by increases in light intensity. The significance of the rca mutation was underlined by effects on growth as, unlike the wild-type, growth rates did not increase after cells transferred from low to high light intensities. Higher exogenous CO2 concentrations (1%) were required to sustain a normal growth rate for the A. variabilis rca mutant. When grown in air levels of CO2, the rca mutant not only needed longer times to double in cell density but also exhibited greatly diminished Rubisco activity compared with the wild-type strain. Despite the unusual properties of cyanobacterial Rubisco, these results suggest a physiological role for the product of the rca gene in maximizing the activity of Rubisco in heterocystous cyanobacteria.  相似文献   

19.
Larval and adult Ambystoma tigrinum were subjected to acidosis by infusing lactic acid (2 M·g-1) into the peritoneal cavity. Blood was sampled at intervals to establish the time-course of the ensuing acidosis. Both larvae and adults became significantly acidotic after 1 h. The larval acidosis was more pronounced (-4 pH units versus-2 pH units) than adults due to greater extracellular buffering capacity (higher [HCO3 -]) in adults. Both forms recovered in about 8 h. Larvae showed a typical increase in circulating norepinephrine during the initial stages of the acidosis; adults did not, having significantly lower norepinephrine titer than larvae during the acidosis. Both larvae and adults showed transient increases in PO2 during the acidosis. The 1 and 2 antagonists, timolol and butoxamine respectively, (0.2 g·g-1) were administered to separate groups of larvae. Butoxamine (2) delayed the recovery from the acidosis by prolonging the increase in arterial PCO2 and reversing the recovery of [HCO3 -]. Timolol (1) did not delay recovery. We conclude that 2 receptors are involved in the catecholamine responses to acidosis in larvae. Catecholamines appear not to play the same role in adult acid-base disturbances as they seem to in larvae.Abbreviations RBC red blood cell  相似文献   

20.
Tobacco (Nicotiana tabacum L.) plants transformed with antisense rbcS to decrease the expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) have been used to investigate the contribution of Rubisco to the control of photosynthesis in plants growing at different irradiances. Tobacco plants were grown in controlled-climate chambers under ambient CO2 at 20°C at 100, 300 and 750 mol·m–2·s–1 irradiance, and at 28°C at 100, 300 and 1000 mol·m–2·s–1 irradiance. (i) Measurement of photosynthesis under ambient conditions showed that the flux control coefficient of Rubisco (C infRubisco supA ) was very low (0.01–0.03) at low growth irradiance, and still fairly low (0.24–0.27) at higher irradiance. (ii) Short-term changes in the irradiance used to measure photosynthesis showed that C infRubisco supA increases as incident irradiance rises, (iii) When low-light (100 mol·m–2·s–1)-grown plants are exposed to high (750–1000 mol·m–2·s–1) irradiance, Rubisco is almost totally limiting for photosynthesis in wild types. However, when high-light-grown leaves (750–1000 mol·m–2·s–1) are suddenly exposed to high and saturating irradiance (1500–2000 mol·m–2·s–1), C infRubisco supA remained relatively low (0.23–0.33), showing that in saturating light Rubisco only exerts partial control over the light-saturated rate of photosynthesis in sun leaves; apparently additional factors are co-limiting photosynthetic performance, (iv) Growth of plants at high irradiance led to a small decrease in the percentage of total protein found in the insoluble (thylakoid fraction), and a decrease of chlorophyll, relative to protein or structural leaf dry weight. As a consequence of this change, high-irradiance-grown leaves illuminated at growth irradiance avoided an inbalance between the light reactions and Rubisco; this was shown by the low value of C infRubisco supA (see above) and by measurements showing that non-photochemical quenching was low, photochemical quenching high, and NADP-malate dehydrogenase activation was low at the growth irradiance. In contrast, when a leaf adapted to low irradiance was illuminated at a higher irradiance, Rubisco exerted more control, non-photochemical quenching was higher, photochemical quenching was lower, and NADP-malate dehydrogenase activation was higher than in a leaf which had grown at that irradiance. We conclude that changes in leaf composition allow the leaf to avoid a one-sided limitation by Rubisco and, hence, overexcitation and overreduction of the thylakoids in high-irradiance growth conditions, (v) Antisense plants with less Rubisco contained a higher content of insoluble (thylakoid) protein and chlorophyll, compared to total protein or structural leaf dry weight. They also showed a higher rate of photosynthesis than the wild type, when measured at an irradiance below that at which the plant had grown. We propose that N-allocation in low light is not optimal in tobacco and that genetic manipulation to decrease Rubisco may, in some circumstances, increase photosynthetic performance in low light.Abbreviations A rate of photosynthesis - C infRubisco supA flux control coefficient of Rubisco for photosynthesis - ci internal CO2 concentration - qE energy-dependent quenching of chlorophyll fluorescense - qQ photochemical quenching of chlorophyll fluorescence - NADP-MDH NADP-dependent malate dehydrogenase - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - RuBP ribulose-1,5-bisphosphate This work was supported by the Deutsche Forschungsgemeinschaft (SFB 137).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号