首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3339篇
  免费   385篇
  国内免费   151篇
  2024年   11篇
  2023年   35篇
  2022年   50篇
  2021年   62篇
  2020年   108篇
  2019年   120篇
  2018年   145篇
  2017年   121篇
  2016年   124篇
  2015年   108篇
  2014年   149篇
  2013年   338篇
  2012年   143篇
  2011年   148篇
  2010年   119篇
  2009年   166篇
  2008年   150篇
  2007年   191篇
  2006年   176篇
  2005年   168篇
  2004年   146篇
  2003年   142篇
  2002年   131篇
  2001年   83篇
  2000年   62篇
  1999年   58篇
  1998年   73篇
  1997年   73篇
  1996年   39篇
  1995年   53篇
  1994年   51篇
  1993年   39篇
  1992年   41篇
  1991年   22篇
  1990年   23篇
  1989年   22篇
  1988年   19篇
  1987年   12篇
  1986年   25篇
  1985年   23篇
  1984年   30篇
  1983年   12篇
  1982年   18篇
  1981年   6篇
  1980年   14篇
  1979年   6篇
  1978年   5篇
  1977年   3篇
  1976年   5篇
  1971年   2篇
排序方式: 共有3875条查询结果,搜索用时 15 毫秒
61.
This discussion, prepared for the Protein Society's symposium honoring the 100th anniversary of Kaj Linderstrøm-Lang, shows how hydrogen exchange approaches initially conceived and implemented by Lang and his colleagues some 50 years ago are contributing to current progress in structural biology. Examples are chosen from the active protein folding field. Hydrogen exchange methods now make it possible to define the structure of protein folding intermediates in various contexts: as tenuous molten globule forms at equilibrium under destabilizing conditions, in kinetic intermediates that exist for less than one second, and as infinitesimally populated excited state forms under native conditions. More generally, similar methods now find broad application in studies of protein structure, energetics, and interactions. This article considers the rise of these capabilities from their inception at the Carlsberg Labs to their contemporary role as a significant tool of modern structural biology.  相似文献   
62.
Hydrogen/deuterium exchange behavior of human recombinant [C22A] FK506 binding protein (C22A FKBP) has been determined by protein fragmentation, combined with electrospray Fourier transform ion cyclotron resonance mass spectrometry (MS). After a specified period of H/D exchange in solution, C22A FKBP was digested by pepsin under slow exchange conditions (pH 2.4, 0 degree C), and then subjected to on-line HPLC/MS for deuterium analysis of each proteolytic peptide. The hydrogen exchange rate of each individual amide hydrogen was then determined independently by heteronuclear two-dimensional NMR on 15N-enriched C22A FKBP. A maximum entropy method (MEM) algorithm makes it possible to derive the distributions of hydrogen exchange rate constants from the MS-determined deuterium exchange-in curves in either the holoprotein or its proteolytic segments. The MEM-derived rate constant distributions of C22A FKBP and different segments of C22A FKBP are compared to the rate constants determined by NMR for individual amide protons. The rate constant distributions determined by both methods are consistent and complementary, thereby validating protein fragmentation/mass spectrometry as a reliable measure of hydrogen exchange in proteins.  相似文献   
63.
Recoverin is a calcium-binding protein that regulates the vertebrate photoresponse by inhibiting rhodopsin kinase in response to high calcium concentrations. It is heterogeneously N-acylated by myristoyl and related fatty acyl residues that are thought to act as "calcium-myristoyl switches," whereby, in the presence of Ca2+, the N-terminal acyl group is extended away from recoverin and, in the absence of calcium, it is more closely associated with the protein. Here we use electrospray ionization mass spectrometry (ESI/MS) to examine hydrogen isotopic exchange rates for specific regions of both acylated and nonacylated recoverin in the presence and absence of calcium. The deuterium exchange rates of three regions in the hydrophobic myristoyl binding pocket of acylated recoverin decreased in the absence of calcium. This effect is most likely due to the closer association of the acyl group with the protein under these conditions. In contrast, rates of deuterium incorporation increased in the absence of calcium for other regions, including the two functional calcium-binding sites. In addition to supporting the calcium-myristoyl switch hypothesis, a comparison of the behavior of acylated and unacylated recoverin revealed that the N-acyl group (N-lauroyl or N-myristoyl) exerts a significant stabilizing influence on the dynamics of recoverin. We demonstrate that the new technique of monitoring hydrogen isotopic exchange by ESI/MS can be used to obtain useful information concerning protein structures in solution using smaller amounts of protein and under more physiologically relevant conditions than is typically possible with NMR or X-ray crystallography.  相似文献   
64.
Nafion膜固定的亚甲基蓝为介体的生物传感器   总被引:3,自引:0,他引:3  
制成了以亚甲基蓝为介体的电流型过氧化氢生物传感器,通过离子交换牢固地固定在Nafion膜中的亚甲基蓝,能有效地在辣根过氧化物酶和玻碳电极之间传递电子.探讨了pH值、温度、工作电位和抗坏血酸等物质对此传感器生物电催化还原H2O2的影响.此生物传感器选择性好、灵敏度高,对H2O2线性响应范围为5.0×10-7~2×10-4 mol/L,响应时间少于30 s.  相似文献   
65.
Intracellular production of active oxygen in the brown alga Fucus evanescens C. Ag. was studied by measuring the capacity for in vivo conversion of 2′,7′-dichlorohydrofluorescein diacetate (DCFH-DA) to the fluorescent dye 2′,7′-dichlorofluorescein (DCF), both in emersed and immersed seaweeds. Algae were incubated in seawater containing DCFH-DA under a range of conditions, and it was also possible to load algae with DCFH-DA and then follow subsequent DCF production in emersed tissue. DCF formation was linear for at least 2 h in both darkness and light, with the rate of formation increasing with the light level. DCF formation was temperature dependent. It also increased when algae were treated with H2O2 or methyl viologen (paraquat), which disrupts photosystem 1 electron transport and increases O?2 production. Exogenous catalase reduced in vivo DCF production, presumably by lowering cellular concentrations of H2O2. Hydrogen peroxide was released into the seawater by illuminated algae resulting in external dye conversion to DCF. However, this does not interfere with in vivo measurement of DCF by loaded, washed algae because DCF leakage appeared to be negligible. Internal DCF did not affect photosynthetic oxygen production relative to untreated controls. Overall, our data suggest that DCFH-DA is a potentially very useful probe for studying active oxygen metabolism in seaweeds subjected to environmental stresses.  相似文献   
66.
The stability properties of oxidized wild-type (wt) and site-directed mutants in surface residues of vegetative (Vfd) and heterocyst (Hfd) ferredoxins from Anabaena 7120 have been characterized by guanidine hydrochloride (Gdn-HCl) denaturation. For Vfd it was found that mutants E95K, E94Q, F65Y, F65W, and T48A are quite similar to wt in stability. E94K is somewhat less stable, whereas E94D, F65A, F65I, R42A, and R42H are substantially less stable than wt. R42H is a substitution found in all Hfds, and NMR comparison of the Anabaena 7120 Vfd and Hfd showed the latter to be much less stable on the basis of hydrogen exchange rates (Chae YK, Abildgaard F, Mooberry ES, Markley JL, 1994, Biochemistry 33:3287-3295); we also find this to be true with respect to Gdn-HCl denaturation. Strikingly, the Hfd mutant H42R is more stable than the wt Hfd by precisely the amount of stability lost in Vfd upon mutating R42 to H (2.0 kcal/mol). On the basis of comparison of the X-ray crystal structures of wt Anabaena Vfd and Hfd, the decreased stabilities of F65A and F65I can be ascribed to increased solvent exposure of interior hydrophobic groups. In the case of Vfd mutants E94K and E94D, the decreased stabilities may result from disruption of a hydrogen bond between the E94 and S47 side chains. The instability of the R42 mutants is also most probably due to decreased hydrogen bonding capabilities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
67.
Crystal structures of the complexes of Streptomyces griseus proteinase B (SGPB) with three P1 variants of turkey ovomucoid inhibitor third domain (OMTKY3), Leu18, Ala18, and Gly18, have been determined and refined to high resolution. Comparisons among these structures and of each with native, uncomplexed SGPB reveal that each complex features a unique solvent structure in the S1 binding pocket. The number and relative positions of water molecules bound in the S1 binding pocket vary according to the size of the side chain of the P1 residue. Water molecules in the S1 binding pocket of SGPB are redistributed in response to the complex formation, probably to optimize hydrogen bonds between the enzyme and the inhibitor. There are extensive water-mediated hydrogen bonds in the interfaces of the complexes. In all complexes, Asn 36 of OMTKY3 participates in forming hydrogen bonds, via water molecules, with residues lining the S1 binding pocket of SGPB. For a homologous series of aliphatic straight side chains, Gly18, Ala18, Abu18, Ape18, and Ahp18 variants, the binding free energy is a linear function of the hydrophobic surface area buried in the interface of the corresponding complexes. The resulting constant of proportionality is 34.1 cal mol-1 A-2. These structures confirm that the binding of OMTKY3 to the preformed S1 pocket in SGPB involves no substantial structural disturbances that commonly occur in the site-directed mutagenesis studies of interior residues in other proteins, thus providing one of the most reliable assessments of the contribution of the hydrophobic effect to protein-complex stability.  相似文献   
68.
Antibody folding is a complex process comprising folding and association reactions. Although it is usually difficult to characterize kinetic folding intermediates, in the case of the antibody Fab fragment, domain-domain interactions lead to a rate-limiting step of folding, thus accumulating folding intermediates at a late step of folding. Here, we analyzed a late folding intermediate of the Fab fragment of the monoclonal antibody MAK 33 from mouse (kappa/IgG1). As a strategy for accumulation of this intermediate we used partial denaturation of the native Fab by guanidinium chloride. This denaturation intermediate, which can be populated to about 90%, is indistinguishable from a late-folding intermediate with respect to denaturation and renaturation kinetics. The spectroscopic analysis reveals a native-like secondary structure of this intermediate with aromatic side chains only slightly more solvent exposed than in the native state. The respective partner domains are weekly associated. From these data we conclude that the intramolecular association of the two chains during folding, with all domains in a native-like structure, follows a two-step mechanism. In this mechanism, presumably hydrophobic interactions are followed by rearrangements leading to the exact complementarity of the contact sites of the respective domains.  相似文献   
69.
Rhizopuspepsin and other fungal aspartic proteinases are distinct from the mammalian enzymes in that they are able to cleave substrates with lysine in the P1 position. Sequence and structural comparisons suggest that two aspartic acid residues, Asp 30 and Asp 77 (pig pepsin numbering), may be responsible for generating this unique specificity. Asp 30 and Asp 77 were changed to the corresponding residues in porcine pepsin, Ile 30 and Thr 77, to create single and double mutants. The zymogen forms of the wild-type and mutant enzymes were overexpressed in Escherichia coli as inclusion bodies. Following solubilization, denaturation, refolding, activation, and purification to homogeneity, structural and kinetic comparisons were made. The mutant enzymes exhibited a high degree of structural similarity to the wild-type recombinant protein and a native isozyme. The catalytic activities of the recombinant proteins were analyzed with chromogenic substrates containing lysine in the P1, P2, or P3 positions. Mutation of Asp 77 resulted in a loss of 7 kcal mol-1 of transition-state stabilization energy in the hydrolysis of the substrate containing lysine in P1. An inhibitor containing the positively charged P1-lysine side chain inhibited only the enzymes containing Asp 77. Inhibition of the Asp 77 mutants of rhizopuspepsin and several mammalian enzymes was restored upon acetylation of the lysine side chain. These results suggest that an exploitation of the specific electrostatic interaction of Asp 77 in the active site of fungal enzymes may lead to the design of compounds that preferentially inhibit a variety of related Candida proteinases in immunocompromised patients.  相似文献   
70.
We have studied the effect of R5020, a synthetic progestin, on the biosynthesis of cellular proteins extracted from the MCF7 and T47D human breast cancer cells, using gel electrophoresis. R5020 stimulates the synthesis, as measured after [35S]-methionine labelling, and the accumulation, as shown by silver staining, of a protein of molecular weight approximately equal to 250,000. The increase of the labelled 250-kilodalton protein was rapid (3 hours) and after 3 days this protein represented approximately equal to 6% of the total cellular proteins (approximately equal to 1 microgram/150,000 cells). The induction of the 250-kilodalton protein was obtained by physiologically active concentrations of several progestins and high concentrations of 5 alpha-dihydrotestosterone but not by estradiol or dexamethasone. It was inhibited by R486 , a progestin antagonist, but not by flutamide, an androgen antagonist. These results indicate a mediation by the progesterone receptor. The 250-kilodalton protein appears to be an excellent probe to study in cell culture the mechanism of action of progestin on human cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号