首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   21篇
  国内免费   2篇
  2023年   7篇
  2022年   5篇
  2021年   1篇
  2020年   5篇
  2019年   22篇
  2018年   12篇
  2017年   29篇
  2016年   20篇
  2015年   15篇
  2014年   26篇
  2013年   43篇
  2012年   3篇
  2011年   10篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1994年   2篇
  1985年   1篇
  1981年   1篇
排序方式: 共有235条查询结果,搜索用时 31 毫秒
21.
目的:本实验通过对比老年人参加太极拳锻炼后的步态学参数的变化,旨在探究太极拳运动对老年人步态稳定性的影响。方法:(1)研究对象:选取40名社区老年人为研究对象。其中练习太极拳两年以上者20人为实验组(练习内容均为简化二十四式太极拳),其中男女各10名;未曾练习太极拳而且未参加其他项目锻炼者20名为对照组,其中男女各10名。(2)测试方法:采用BIODEX步态训练仪对两组不同老年人进行步态测试。实验数据采用SPSS13.0统计软件进行处理,以P<0.05为有显著性差异,P<0.01为有非常显著性差异。结果:随着年龄的增长,老年人的步态稳定性逐渐下降,同年龄段的老年人女性的步态稳定性优于男性老年人,男性老年人步长大于女性老年人。女性老年人的左脚功能明显优于男性老年人左脚功能。长期参加太极拳锻炼的老年人步态稳定性明显提高,在步速一定的情况下,通过加大步长,降低步频提高了步态的稳定性。结论:太极拳锻炼对促进老年人步态稳定提高平衡能力有显著效果,经常参加太极拳锻炼有助于老年人下肢功能的维持,应大力开展老年人太极拳锻炼。  相似文献   
22.
Head-bobbing walking (HBW) and non-bobbing walking (NBW) of black-headed gulls were compared from kinematic and behavioral/environmental viewpoints. The birds walked with a longer stride length and lower stride frequency during the HBW than during the NBW. With respect to these two parameters, the HBW of black-headed gulls was similar to that of other head-bobbers, and the NBW was similar to that of other non-bobbers. The stride length and the amplitude of head bobbing were correlated. These results suggest that the head-bobbing and gait parameters are related. From a behavioral viewpoint, HBW was observed during seeking-type foraging by wading, and NBW was observed during waiting-type foraging on a flat substrate. The type of foraging behavior and/or substrate condition probably determines whether the birds walk with or without head bobbing.  相似文献   
23.
Partial weight-bearing instructions are commonly given to orthopaedic patients and are an important part of post-injury and/or post-operative care. However, the ability of patients to comply with these instructions is poorly defined. Training methods for instructing these patients vary widely among institutions. Traditional methods of training include verbal instruction and use of a bathroom scale. Recent technological advances have created biofeedback devices capable of offering feedback to partial weight-bearing patients. Biofeedback devices have shown great promise in training patients to better comply with partial weight-bearing instructions. This review examines the background and significance of partial weight bearing and offers insights into current advances in training methods for partial weight-bearing patients.  相似文献   
24.
Normal and limited vision gait was investigated in individuals with Parkinson disease (PD), healthy older and healthy young individuals. Participants walked a GAITRite mat with normal vision or vision of lower limbs occluded. Results indicate individuals with PD walked more slowly, with shorter and wider steps, and spent more time in double support with limited vision as compared to full vision. Healthy young and old individuals took shorter steps but were otherwise unchanged between conditions.  相似文献   
25.
It has long been held that hip abduction compensates for reduced swing-phase knee flexion angle, especially in those after stroke. However, there are other compensatory motions such as pelvic obliquity (hip hiking) that could also be used to facilitate foot clearance with greater energy efficiency. Our previous work suggested that hip abduction may not be a compensation for reduced knee flexion after stroke. Previous study applied robotic knee flexion assistance in people with post-stroke Stiff-Knee Gait (SKG) during pre-swing, finding increased abduction despite improved knee flexion and toe clearance. Thus, our hypothesis was that hip abduction is not a compensation for reduced knee flexion. We simulated the kinematics of post-stroke SKG on unimpaired individuals with three factors: a knee orthosis to reduce knee flexion, an ankle-foot orthosis commonly worn by those post-stroke, and matching gait speeds. We compared spatiotemporal measures and kinematics between experimental factors within healthy controls and with a previously recorded cohort of people with post-stroke SKG. We focused on frontal plane motions of hip and pelvis as possible compensatory mechanisms. We observed that regardless of gait speed, knee flexion restriction increased pelvic obliquity (2.8°, p < 0.01) compared to unrestricted walking (1.5°, p < 0.01), but similar to post-stroke SKG (3.4°). However, those with post-stroke SKG had greater hip abduction (8.2°) compared to unimpaired individuals with restricted knee flexion (4.2°, p < 0.05). These results show that pelvic obliquity, not hip abduction, compensates for reduced knee flexion angle. Thus, other factors, possibly neural, facilitate exaggerated hip abduction observed in post-stroke SKG.  相似文献   
26.
Computed tomography scans of the proximal femoral shaft of the South African “robust” australopithecine, A. robustus, reveal a total morphological pattern that is similar to the specimen attributed to A. boisei in East Africa but unlike that of Homo erectus or modern human femora. Like femora attributed to H. erectus, SK 82 and 97 have very thick cortices, although they do not have the extreme increase in mediolateral buttressing that is so characteristic of H. erectus. And unlike H. erectus or modern humans, their femoral heads are very small relative to shaft strength. These features are consistent with both increased overall mechanical loading of the postcranial skeleton and a possibly slightly altered pattern of bipedal gait relative to that of H. erectus and modern humans. Am J Phys Anthropol 109:509–521, 1999. © 1999 Wiley-Liss, Inc.  相似文献   
27.
28.
Most quadruped reptiles,such as lizards,salamanders and crocodiles,swing their waists while climbing on horizontal or vertical surfaces.Accompanied by body movement,the centroid trajectory also becomes more of a zigzag path rather than a straight line.Inspired by gecko's gait and posture on a vertical surface,a gecko inspired model with one pendular waist and four active axil legs,which is called GPL model,is proposed.Relationship between the waist position,dynamic gait,and driving forces on supporting feet is analyzed.As for waist trajectory planning,a singular line between the supporting feet is found and its effects on driving forces are discussed.Based on the GPL model,it is found that a sinusoidal waist trajectory,rather than a straight line,makes the driving forces on the supporting legs smaller.Also,a waist close to the pygal can reduce the driving forces compared to the one near middle vertebration,which is in accord with gecko's body bending in the process of climbing.The principles of configuration design and gait planning are proposed based on theoretical analyses.Finally,a bio-inspired robot DracoBot is developed and both of the driving force measurements and climbing experiments reinforce theoretical analysis and the rationality of gecko's dynamic gait.  相似文献   
29.
Temporo-spatial observation of the leg could provide important information about the general condition of an animal, especially for those such as sheep and other free-ranging farm animals that can be difficult to access. Tri-axial accelerometers are capable of collecting vast amounts of data for locomotion and posture observations; however, interpretation and optimization of these data records remain a challenge. The aim of the present study was to introduce an optimized method for gait (walking, trotting and galloping) and posture (standing and lying) discrimination, using the acceleration values recorded by a tri-axial accelerometer mounted on the hind leg of sheep. The acceleration values recorded on the vertical and horizontal axes, as well as the total acceleration values were categorized. The relative frequencies of the acceleration categories (RFACs) were calculated in 3-s epochs. Reliable RFACs for gait and posture discrimination were identified with discriminant function and canonical analyses. Post hoc predictions for the two axes and total acceleration were conducted, using classification functions and classification scores for each epoch. Mahalanobis distances were used to determine the level of accuracy of the method. The highest discriminatory power for gait discrimination yielded four RFACs on the vertical axis, and five RFACs each on the horizontal axis and total acceleration vector. Classification functions showed the highest accuracy for walking and galloping. The highest total accuracy on the vertical and horizontal axes were 90% and 91%, respectively. Regarding posture discrimination, the vertical axis exhibited the highest discriminatory power, with values of RFAC (0, 1]=99.95% for standing; and RFAC (−1, 0]=99.50% for lying. The horizontal axis showed strong discrimination for the lying side of the animal, as values were in the acceleration category of (0, 1] for lying on the left side and (−1, 0] on the right side. The algorithm developed by the method employed in the present study facilitates differentiation of the various types of gait and posture in animals from fewer data records, and produces the most reliable acceleration values from only one axis within a short time frame. The present study introduces an optimized method by which the tri-axial accelerometer can be used in gait and posture discrimination in sheep as an animal model.  相似文献   
30.
Modern fast-growing broilers spend excessive periods resting and their activity further decreases with age. Inactivity has been suggested to increase impaired gait and the incidence of leg disorders. Tibial dyschondroplasia (TD) is a common leg pathology in broilers. A more complex environment might facilitate more activity and improve leg health. Perches or elevated platforms bring variety to broilers’ environment and could motivate more locomotion. This study examined the impact of perches and elevated platforms on walking ability, the occurrence of TD and level of bone ash and mineral contents. The investigation was performed on four commercial broiler farms throughout six consecutive batches with platforms and four to five with perches. On each farm at least two separate houses were included, enabling the comparison of furnished flocks to control flocks during each batch. Plastic slats with ramp access elevated by 30 cm or wooden perches of 10 and 30 cm height were offered in the furnished house. Farmers recorded the platform and perch usage twice a week with a five-point scale. Gait was scored before slaughter on a six-point scale according to the Welfare Quality® assessment protocol for poultry. The severity of TD was determined using a four-point scale on farm from all birds gait scored as 3 and at slaughter from 200 birds/flock. Farmers estimated 50% to 100% of the platforms to be occupied in all flocks throughout the entire growing period. Only single birds were perching, thus perch structures were constantly evaluated to be empty. Due to the low use, the perch-equipped houses were excluded when analysing bone content, walking ability and TD. On average, 30% of the tested birds exhibited gait score ⩾3. Younger scoring age resulted in a lower mean gait score and a lower percentage of scores 3 and 4 to 5. Overall, 2.3% of the birds examined at slaughter and 3.5% of the birds with gait score 3 were affected by TD. Leg health was better in birds with access to platforms: mean gait score, the percentage of birds scoring 3, and TD percentage and severity were lower in birds in platform-equipped houses. Elevated structures such as platforms, offering additional possibilities for locomotion to broilers seem to improve their leg health.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号