首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4293篇
  免费   680篇
  国内免费   450篇
  2024年   16篇
  2023年   116篇
  2022年   98篇
  2021年   261篇
  2020年   290篇
  2019年   390篇
  2018年   293篇
  2017年   219篇
  2016年   218篇
  2015年   200篇
  2014年   244篇
  2013年   359篇
  2012年   165篇
  2011年   196篇
  2010年   172篇
  2009年   224篇
  2008年   210篇
  2007年   214篇
  2006年   238篇
  2005年   168篇
  2004年   172篇
  2003年   124篇
  2002年   97篇
  2001年   114篇
  2000年   82篇
  1999年   67篇
  1998年   65篇
  1997年   38篇
  1996年   36篇
  1995年   31篇
  1994年   35篇
  1993年   27篇
  1992年   25篇
  1991年   27篇
  1990年   25篇
  1989年   16篇
  1988年   15篇
  1987年   16篇
  1986年   7篇
  1985年   21篇
  1984年   19篇
  1983年   9篇
  1982年   14篇
  1981年   7篇
  1980年   10篇
  1979年   5篇
  1978年   9篇
  1977年   6篇
  1975年   4篇
  1974年   4篇
排序方式: 共有5423条查询结果,搜索用时 234 毫秒
101.
Adenomyosis is also called internal endometriosis and affects about 20% of reproductive‐aged women. It seriously reduces life quality of patients because current drug therapies face with numerous challenges. Long‐term clinical application of mifepristone exhibits wonderful therapeutic effects with mild side‐effects in many disorders since 1982. Since adenomyosis is a refractory disease, we investigate whether mifepristone can be applied in the treatment of adenomyosis. In this study, we investigated the direct effects of mifepristone on human primary eutopic endometrial epithelial cells and stromal cells in adenomyosis. We found that mifepristone causes cell cycle arrest through inhibiting CDK1 and CDK2 expressions and induces cell apoptosis via the mitochondria‐dependent signalling pathway in endometrial epithelial cells and stromal cells of adenomyosis. Furthermore, mifepristone inhibits the migration of endometrial epithelial cells and stromal cells through decreasing CXCR4 expression and restricts the invasion of endometrial epithelial cells via suppression of epithelial‐mesenchymal transition in adenomyosis. We also found that mifepristone treatment decreases the uterine volume, CA125 concentration and increases the haemoglobin concentration in serum for adenomyosis patients. Therefore, we demonstrate that mifepristone could serve as a novel therapeutic drug in the treatment of adenomyosis, and therefore, the old dog can do a new trick.  相似文献   
102.
新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)疫情十分严重,给民众的健康带来了巨大威胁。COVID-19患者可能继发侵袭性真菌感染,会严重威胁患者的生命,因此,在诊治策略上应该给予重视。除了加强高危患者中病原真菌的常规检查外,还应加大力度支持和扶持病原真菌先进检测技术的研发;此外,还应重点支持针对医疗单位、公共场所和家庭等常温环境以及体表和器物表面灭活病毒、细菌、真菌等病原体的新型技术和方法的研发。最终为国家战胜COVID-19和继发感染疫情提供新措施和新策略。  相似文献   
103.
Taxonomy is a traditional subject, but it still receives attention and has become a topic of much discussion in recent years. Many of these discussions have raised concerns about the future of taxonomy, especially with regard to the workforce responsible for the discovery of new species in the context of declining biodiversity. Previous discussions were based on the taxonomic data of plants and animals, but the status of fungal taxonomy has not been mentioned. Fungi have one of the highest levels of biodiversity among all living organisms, second only to insects. The discussion of the future of taxonomy without the inclusion of fungal data is incomplete. Here, we present the results of analyses based on all new fungal taxa published since 1753. Fungal taxonomy is an ever‐growing area of study with increasing numbers of new taxa being described and growing numbers of fungal taxonomists. Compared with plants and most animal groups, there has been a much sharper increase in the rate at which new fungal taxa are being described. Furthermore, the number of taxonomists studying fungi has increased at a faster speed than those studying plants or animals. This indicates that fungal taxonomy is a prosperous subject and a dynamic area for scientific studies, and that it deserves much more attention and support. The study of fungal taxonomy will deepen our understanding of the biodiversity of our planet.  相似文献   
104.
The risk of aquatic invasions in the Arctic is expected to increase with climate warming, greater shipping activity and resource exploitation in the region. Planktonic and benthic marine aquatic invasive species (AIS) with the greatest potential for invasion and impact in the Canadian Arctic were identified and the 23 riskiest species were modelled to predict their potential spatial distributions at pan‐Arctic and global scales. Modelling was conducted under present environmental conditions and two intermediate future (2050 and 2100) global warming scenarios. Invasion hotspots—regions of the Arctic where habitat is predicted to be suitable for a high number of potential AIS—were located in Hudson Bay, Northern Grand Banks/Labrador, Chukchi/Eastern Bering seas and Barents/White seas, suggesting that these regions could be more vulnerable to invasions. Globally, both benthic and planktonic organisms showed a future poleward shift in suitable habitat. At a pan‐Arctic scale, all organisms showed suitable habitat gains under future conditions. However, at the global scale, habitat loss was predicted in more tropical regions for some taxa, particularly most planktonic species. Results from the present study can help prioritize management efforts in the face of climate change in the Arctic marine ecosystem. Moreover, this particular approach provides information to identify present and future high‐risk areas for AIS in response to global warming.  相似文献   
105.
106.
107.
The biotrophic fungal pathogen Ustilaginoidea virens causes rice false smut, a newly emerging plant disease that has become epidemic worldwide in recent years. The U. virens genome encodes many putative effector proteins that, based on the study of other pathosystems, could play an essential role in fungal virulence. However, few studies have been reported on virulence functions of individual U. virens effectors. Here, we report our identification and characterization of the secreted cysteine-rich protein SCRE1, which is an essential virulence effector in U. virens. When SCRE1 was heterologously expressed in Magnaporthe oryzae, the protein was secreted and translocated into plant cells during infection. SCRE1 suppresses the immunity-associated hypersensitive response in the nonhost plant Nicotiana benthamiana. Induced expression of SCRE1 in rice also inhibits pattern-triggered immunity and enhances disease susceptibility to rice bacterial and fungal pathogens. The immunosuppressive activity is localized to a small peptide region that contains an important ‘cysteine-proline-alanine-arginine-serine’ motif. Furthermore, the scre1 knockout mutant generated using the CRISPR/Cas9 system is attenuated in U. virens virulence to rice, which is greatly complemented by the full-length SCRE1 gene. Collectively, this study indicates that the effector SCRE1 is able to inhibit host immunity and is required for full virulence of U. virens.  相似文献   
108.
Campylobacter jejuni is a bacterial pathogen that is generally acquired as a zoonotic infection from poultry and animals. Adhesion of C. jejuni to human colorectal epithelial cells is weakened after loss of its cj0588 gene. The Cj0588 protein belongs to the type I group of TlyA (TlyAI) enzymes, which 2′‐O‐methylate nucleotide C1920 in 23S rRNA. Slightly longer TlyAII versions of the methyltransferase are found in actinobacterial species including Mycobacterium tuberculosis, and methylate not only C1920 but also nucleotide C1409 in 16S rRNA. Loss of TlyA function attenuates virulence of both M. tuberculosis and C. jejuni. We show here that the traits impaired in C. jejuni null strains can be rescued by complementation not only with the original cj0588 (tlyA I) but also with a mycobacterial tlyA II gene. There are, however, significant differences in the recombinant phenotypes. While cj0588 restores motility, biofilm formation, adhesion to and invasion of human epithelial cells and stimulation of IL‐8 production in a C. jejuni null strain, several of these properties are further enhanced by the mycobacterial tlyA II gene, in some cases to twice the original wild‐type level. These findings strongly suggest that subtle changes in rRNA modification patterns can affect protein synthesis in a manner that has serious consequences for bacterial pathogenicity.  相似文献   
109.
Staphylococcus aureus is a facultative intracellular pathogen. Recently, it has been shown that the protein part of the lipoprotein‐like lipoproteins (Lpls), encoded by the lpl cluster comprising of 10 lpls paralogue genes, increases pathogenicity, delays the G2/M phase transition, and also triggers host cell invasion. Here, we show that a recombinant Lpl1 protein without the lipid moiety binds directly to the isoforms of the human heat shock proteins Hsp90α and Hsp90ß. Synthetic peptides covering the Lpl1 sequence caused a twofold to fivefold increase of S. aureus invasion in HaCaT cells. Antibodies against Hsp90 decrease S. aureus invasion in HaCaT cells and in primary human keratinocytes. Additionally, inhibition of ATPase function of Hsp90 or silencing Hsp90α expression by siRNA also decreased the S. aureus invasion in HaCaT cells. Although the Hsp90ß is constitutively expressed, the Hsp90α isoform is heat‐inducible and appears to play a major role in Lpl1 interaction. Pre‐incubation of HaCaT cells at 39°C increased both the Hsp90α expression and S. aureus invasion. Lpl1‐Hsp90 interaction induces F‐actin formation, thus, triggering an endocytosis‐like internalisation. Here, we uncovered a new host cell invasion principle on the basis of Lpl‐Hsp90 interaction.  相似文献   
110.
Plasmodium falciparum responsible for the most virulent form of malaria invades human erythrocytes through multiple ligand‐receptor interactions. The P. falciparum reticulocyte binding protein homologues (PfRHs) are expressed at the apical end of merozoites and form interactions with distinct erythrocyte surface receptors that are important for invasion. Here using a range of monoclonal antibodies (mAbs) against different regions of PfRH1 we have investigated the role of PfRH processing during merozoite invasion. We show that PfRH1 gets differentially processed during merozoite maturation and invasion and provide evidence that the different PfRH1 processing products have distinct functions during invasion. Using in‐situ Proximity Ligation and FRET assays that allow probing of interactions at the nanometre level we show that a subset of PfRH1 products form close association with micronemal proteins Apical Membrane Antigen 1 (AMA1) in the moving junction suggesting a critical role in facilitating junction formation and active invasion. Our data provides evidence that time dependent processing of PfRH proteins is a mechanism by which the parasite is able to regulate distinct functional activities of these large processes. The identification of a specific close association with AMA1 in the junction now may also provide new avenues to target these interactions to prevent merozoite invasion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号