首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 90‐kDa heat shock protein (Hsp90α) has been identified on the surface of cancer cells, and is implicated in tumor invasion and metastasis, suggesting that it is a potentially important target for tumor therapy. However, the regulatory mechanism of Hsp90α plasma membrane translocation during tumor invasion remains poorly understood. Here, we show that Hsp90α plasma membrane expression is selectively upregulated upon epidermal growth factor (EGF) stimulation, which is a process independent of the extracellular matrix. Abrogation of EGF‐mediated activation of phospholipase (PLCγ1) by its siRNA or inhibitor prevents the accumulation of Hsp90α at cell protrusions. Inhibition of the downstream effectors of PLCγ1, including Ca2+ and protein kinase C (PKCγ), also blocks the membrane translocation of Hsp90α, while activation of PKCγ leads to increased levels of cell‐surface Hsp90α. Moreover, overexpression of PKCγ increases extracellular vesicle release, on which Hsp90α is present. Furthermore, activation or overexpression of PKCγ promotes tumor cell motility in vitro and tumor metastasis in vivo, whereas a specific neutralizing monoclonal antibody against Hsp90α inhibits such effects, demonstrating that PKCγ‐induced Hsp90α translocation is required for tumor metastasis. Taken together, our study provides a mechanistic basis for the role for the PLCγ1–PKCγ pathway in regulating Hsp90α plasma membrane translocation, which facilitates tumor cell motility and promotes tumor metastasis.  相似文献   

2.
Deregulated accumulation of hypoxia-inducible factor-1α (HIF-1α) is a hallmark of many solid tumors. Directly targeting HIF-1α for therapeutics is challenging. Our finding that HIF-1α regulates secretion of heat shock protein-90α (Hsp90α) for cell migration raises the exciting possibility that targeting the secreted Hsp90α from HIF-1α-positive tumors has a better clinical outlook. Using the HIF-1α-positive and metastatic breast cancer cells MDA-MB-231, we show that down-regulation of the deregulated HIF-1α blocks Hsp90α secretion and invasion of the cells. Reintroducing an active, but not an inactive, HIF-1α into endogenous HIF-1α-depleted cells rescues both Hsp90α secretion and invasion. Inhibition of Hsp90α secretion, neutralization of secreted Hsp90α action, or removal of the cell surface LRP-1 receptor for secreted Hsp90α reduces the tumor cell invasion in vitro and lung colonization and tumor formation in nude mice. Furthermore, we localized the tumor-promoting effect to a 115-amino acid region in secreted Hsp90α called F-5. Supplementation with F-5 is sufficient to bypass the blockade of HIF-1α depletion and resumes invasion by the tumor cells under serum-free conditions. Because normal cells do not secrete Hsp90α in the absence of stress, drugs that target F-5 should be more effective and less toxic in treatment of HIF-1α-positive tumors in humans.  相似文献   

3.
Invasive Staphylococcus aureus infection frequently involves bacterial seeding from the bloodstream to other body tissues, a process necessarily involving interactions between circulating bacteria and vascular endothelial cells. Staphylococcus aureus fibronectin‐binding protein is central to the invasion of endothelium, fibronectin forming a bridge between bacterial fibronectin‐binding proteins and host cell receptors. To dissect further the mechanisms of invasion of endothelial cells by S. aureus, a series of truncated FnBPA proteins that lacked one or more of the A, B, C or D regions were expressed on the surface of S. aureus and tested in fibronectin adhesion, endothelial cell adhesion and invasion assays. We found that this protein has multiple, substituting, fibronectin‐binding regions, each capable of conferring both adherence to fibronectin and endothelial cells, and endothelial cell invasion. By expressing S. aureus FnBPA on the surface of the non‐invasive Gram‐positive organism Lactococcus lactis, we have found that no other bacterial factor is required for invasion. Furthermore, we have demonstrated that, as with other cell types, invasion of endothelial cells is mediated by integrin α5β1. These findings may be of relevance to the development of preventive measures against systemic infection, and bacterial spread in the bacteraemic patient.  相似文献   

4.
Autophagy, a catabolic pathway of lysosomal degradation, acts not only as an efficient recycle and survival mechanism during cellular stress, but also as an anti-infective machinery. The human pathogen Staphylococcus aureus (S. aureus) was originally considered solely as an extracellular bacterium, but is now recognized additionally to invade host cells, which might be crucial for persistence. However, the intracellular fate of S. aureus is incompletely understood. Here, we show for the first time induction of selective autophagy by S. aureus infection, its escape from autophagosomes and proliferation in the cytoplasm using live cell imaging. After invasion, S. aureus becomes ubiquitinated and recognized by receptor proteins such as SQSTM1/p62 leading to phagophore recruitment. Yet, S. aureus evades phagophores and prevents further degradation by a MAPK14/p38α MAP kinase-mediated blockade of autophagy. Our study demonstrates a novel bacterial strategy to block autophagy and secure survival inside the host cell.  相似文献   

5.
6.
TccC3 and TccC5 from Photorhabdus luminescens are ADP‐ribosyltransferases, which modify actin and Rho GTPases, respectively, thereby inducing polymerization and clustering of actin. The bacterial proteins are components of the Photorhabdus toxin complexes, consisting of the binding and translocation component TcdA1, a proposed linker component TcdB2 and the enzymatic component TccC3/5. While the action of the toxins on target proteins is clearly defined, uptake and translocation of the toxins into the cytosol of target cells are not well understood. Here we show by using pharmacological inhibitors that heat shock protein 90 (Hsp90) and peptidyl prolyl cis/trans isomerases (PPIases) including cyclophilins and FK506‐binding proteins (FKBPs) facilitate the uptake of the ADP‐ribosylating toxins into the host cell cytosol. Inhibition of Hsp90 and/or PPIases resulted in decreased intoxication of target cells by Photorhabdus toxin complexes determined by cell rounding and reduction of transepithelial electrical resistance of cell monolayers. ADP‐ribosyltransferase activity of toxins and toxin‐induced pore formation were notimpaired by the inhibitors of Hsp90 and PPIases. The Photorhabdus toxins interacted with Hsp90, FKBP51, Cyp40 and CypA, suggesting a role of these host cell factors in translocation and/or refolding of the ADP‐ribosyltransferases.  相似文献   

7.
Reviewed here are some recent examples of medically important protein targets for which stereoselective drugs have been identified. These include heat shock protein 90 (Hsp90) inhibitors as anticancer agents; transient receptor potential vanilloid type 1 antagonists as new analgesics; stereospecific inhibition of human mutT homolog MTH1 for cancer treatment; the stereoselective binding of R‐ and S‐propranolol by the α1–acid glycoprotein transporter; metallohelical complexes that are nonpeptide α‐helical mimetics that enantioselectively target Aβ amyloid for the treatment of Alzheimer's disease; metallohelical assemblies with promising antimicrobial activity that enantioselectively target DNA of resistant bacteria; nonpeptide α‐helical metallohelices that target the DNA of cisplatin‐resistant cancer cells; diastereomeric selectivity of phenanthriplatin‐guanine adducts; and phenazine biosynthetic enzyme active sites that can host both enantiomers of a racemic ligand simultaneously. Chirality 27:589597, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
The heat shock protein 90 plays a pivotal role in the life cycle control of Leishmania donovani promoting the fast‐growing insect stage of this parasite. Equally important for insect stage growth is the co‐chaperone Sti1. We show that replacement of Sti1 is only feasible in the presence of additional Sti1 transgenes indicating an essential role. To better understand the impact of Sti1 and its interaction with Hsp90, we performed a mutational analysis of Hsp90. We established that a single amino acid exchange in the Leishmania Hsp90 renders that protein resistant to the inhibitor radicicol (RAD), yet does not interfere with its functionality. Based on this RAD‐resistant Hsp90, we established a combined chemical knockout/gene complementation (CKC) approach. We can show that Hsp90 function is required in both insect and mammalian life stages and that the Sti1‐binding motif of Hsp90 is crucial for proliferation of insect and mammalian stages of the parasite. The Sti1‐binding motif in Leishmania Hsp90 is suboptimal – optimizing the motif increased initial intracellular proliferation underscoring the importance of the Hsp90–Sti1 interaction for this important parasitic protozoan. The CKC strategy we developed will allow the future analysis of more Hsp90 domains and motifs in parasite viability and infectivity.  相似文献   

9.
Staphylococcus aureus and Staphylococcus epidermidis can cause serious chronic and recurrent infections that are difficult to eradicate. An important pathogenicity factor in these infections caused by S. aureus is its ability to be internalized by non‐professional phagocytes thereby evading the host immune system and antibiotic treatment. Here, we report a novel mechanism involved in staphylococcal internalization by host cells, which is mediated by the major autolysin/adhesins Atl and AtlE from S. aureus and S. epidermidis respectively. In a flow cytometric internalization assay, atl and atlE mutants are significantly reduced in their capacities to be internalized by endothelial cells. Moreover, pre‐incubation of endothelial cells with recombinant Atl dose‐dependently inhibited internalization. As putative Atl‐host cell receptor, the heat shock cognate protein Hsc70 was identified by mass spectrometry. The importance of Hsc70 in internalization was demonstrated by the inhibition of S. aureus internalization with anti‐Hsc70 antibodies. In conclusion, this novel Atl‐ or AtlE‐mediated internalization mechanism may represent a ‘back‐up’ mechanism in S. aureus internalization, while it may represent the major or even sole mechanism involved in the internalization of coagulase‐negative staphylococci and thus may play an important role in the pathogenesis of chronic and relapsing infections with these serious pathogens.  相似文献   

10.
11.
NadA (N eisseria meningitidisadhesin A), a meningococcal surface protein, mediates adhesion to and invasion of human cells, an activity in which host membrane proteins have been implicated. While investigating these host factors in human epithelial cells by affinity chromatography, we discovered an unanticipated interaction of NadA with heat shock protein (Hsp) 90, a molecular chaperone. The specific in vitro interaction of recombinant soluble NadA and Hsp90 was confirmed by co-immunoprecipitations, dot and far-Western blot. Intriguingly, ADP, but not ATP, was required for this association, and the Hsp90 inhibitor 17-AAG promoted complex formation. Hsp90 binding to an Escherichia coli strain used as carrier to express surface exposed NadA confirmed these results in live bacteria. We also examined RNA interference, plasmid-driven overexpression, addition of exogenous rHsp90 and 17-AAG inhibition in human epithelial cells to further elucidate the involvement of Hsp90 in NadA-mediated adhesion and invasion. Together, these data suggest an inverse correlation between the amount of host Hsp90 and the NadA adhesive/invasive phenotype. Confocal microscopy also demonstrated that meningococci interact with cellular Hsp90, a completely novel finding. Altogether our results show that variation of host Hsp90 expression or activity interferes with adhesive and invasive events driven by NadA.  相似文献   

12.
Sims JD  McCready J  Jay DG 《PloS one》2011,6(4):e18848
Breast cancer is second only to lung cancer in cancer-related deaths in women, and the majority of these deaths are caused by metastases. Obtaining a better understanding of migration and invasion, two early steps in metastasis, is critical for the development of treatments that inhibit breast cancer metastasis. In a functional proteomic screen for proteins required for invasion, extracellular heat shock protein 90 alpha (Hsp90α) was identified and shown to activate matrix metalloproteinase 2 (MMP-2). The mechanism of MMP-2 activation by Hsp90α is unknown. Intracellular Hsp90α commonly functions with a complex of co-chaperones, leading to our hypothesis that Hsp90α functions similarly outside of the cell. In this study, we show that a complex of co-chaperones outside of breast cancer cells assists Hsp90α mediated activation of MMP-2. We demonstrate that the co-chaperones Hsp70, Hop, Hsp40, and p23 are present outside of breast cancer cells and co-immunoprecipitate with Hsp90α in vitro and in breast cancer conditioned media. These co-chaperones also increase the association of Hsp90α and MMP-2 in vitro. This co-chaperone complex enhances Hsp90α-mediated activation of MMP-2 in vitro, while inhibition of Hsp70 in conditioned media reduces this activation and decreases cancer cell migration and invasion. Together, these findings support a model in which MMP-2 activation by an extracellular co-chaperone complex mediated by Hsp90α increases breast cancer cell migration and invasion. Our studies provide insight into a novel pathway for MMP-2 activation and suggest Hsp70 as an additional extracellular target for anti-metastatic drug development.  相似文献   

13.
The molecular chaperone Hsp90 facilitates the folding and modulates activation of diverse substrate proteins. Unlike other heat shock proteins such as Hsp60 and Hsp70, Hsp90 plays critical regulatory roles by maintaining active states of kinases, many of which are overactive in cancer cells. Four Hsp90 paralogs are expressed in eukaryotic cells: Hsp90α/β (in the cytosol), Grp94 (in the endoplasmic reticulum), Trap1 (in mitochondria). Although numerous Hsp90 inhibitors are being tested in cancer clinical trials, little is known about why different Hsp90 inhibitors show specificity among Hsp90 paralogs. The paralog specificity of Hsp90 inhibitors is likely fundamental to inhibitor efficacy and side effects. In hopes of gaining insight into this issue we examined NECA (5′‐N‐ethylcarboxamidoadenosine), which has been claimed to be an example of a highly specific ligand that binds to one paralog, Grp94, but not cytosolic Hsp90. To our surprise we find that NECA inhibits many different Hsp90 proteins (Grp94, Hsp90α, Trap1, yeast Hsp82, bacterial HtpG). NMR experiments demonstrate that NECA can bind to the N‐terminal domains of Grp94 and Hsp82. We use ATPase competition experiments to quantify the inhibitory power of NECA for different Hsp90 proteins. This scale: Hsp82 > Hsp90α > HtpG ≈ Grp94 > Trap1, ranks Grp94 as less sensitive to NECA inhibition. Because NECA is primarily used as an adenosine receptor agonist, our results also suggest that cell biological experiments utilizing NECA may have confounding effects from cytosolic Hsp90 inhibition.  相似文献   

14.
Staphylococcus aureus community‐acquired (CA) MRSA strains are highly virulent and can cause infections in otherwise healthy individuals. The most important mechanism of the host for clearing S. aureus is phagocytosis by neutrophils and subsequent killing of the pathogen. Especially CA‐MRSA strains are very efficient in circumventing this neutrophil killing. Interestingly, only a relative small number of virulence factors have been associated with CA‐MRSA, one of which are the phenol soluble modulins (PSMs). We have recently shown that the PSMs are functionally inhibited by serum lipoproteins, indicating that PSMs may exert their cytolytic function primarily in the intracellular environment. To further investigate the intracellular role of the PSMs we measured the effect of the α‐type and β‐type PSMs on neutrophil killing after phagocytosis. Using fluorescently labelled S. aureus, we measured bacterial survival after phagocytosis in a plate reader, which was employed next to flow cytometry and time‐lapse microscopy. Phagocytosis of the CA‐MRSA strain MW2 by human neutrophils resulted in rapid host cell death. Using mutant strains of MW2, we demonstrated that in the presence of serum, the intracellular expression of only the psmα operon is both necessary and sufficient for both increasedneutrophil cell death and increased survival of S. aureus. Our results identify PSMα peptides as prominent contributors to killing of neutrophils after phagocytosis, a finding with major implications for our understanding of S. aureus pathogenesis and strategies for S. aureus vaccine development.  相似文献   

15.
This study investigated the expression of heat shock protein 90 alpha (Hsp90α) in acute leukemia cells. The expression of Hsp90α was investigated in leukemia cell lines and human bone marrow mononuclear cells derived from acute leukemia patients and from healthy individuals using polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay. Compared with cells from healthy individuals, the expression of Hsp90α in the untreated patients was higher. Similarly high levels were observed in remission patients. Significantly higher expression levels were observed in all the tested cell lines, and in cells from refractory and relapsed patients. No obvious relationship was observed between the occurrence of graft versus host disease and the expression of Hsp90α. The untreated patients showing higher expression levels of Hsp90α had lower complete remission rates. During remission of untreated patients, the expression of Hsp90α decreased and reached the lowest level after transplantation, but the expression increased again before relapse. Hsp90α was highly expressed in leukemia cells. The expression level of Hsp90α was associated with leukemia prognosis. However, no obvious relationship was observed between the occurrence of graft versus host disease and the expression of Hsp90α.  相似文献   

16.
The interaction of outer membrane protein A (OmpA) with its receptor, Ecgp96 (a homologue of Hsp90β), is critical for the pathogenesis of Escherichia coli K1 meningitis. Since Hsp90 chaperones Toll‐like receptors (TLRs), we examined the role of TLRs in E. coli K1 infection. Herein, we show that newborn TLR2?/? mice are resistant to E. coli K1 meningitis, while TLR4?/? mice succumb to infection sooner. In vitro, OmpA+ E. coli infection selectively upregulates Ecgp96 and TLR2 in human brain microvascular endothelial cells (HBMEC), whereas OmpA? E. coli upregulates TLR4 in these cells. Furthermore, infection with OmpA+ E. coli causes Ecgp96 and TLR2 translocate to the plasma membrane of HBMEC as a complex. Immunoprecipitation studies of the plasma membrane fractions from infected HBMEC reveal that the C termini of Ecgp96 and TLR2 are critical for OmpA+ E. coli invasion. Knockdown of TLR2 using siRNA results in inefficient membrane translocation of Ecgp96 and significantly reduces invasion. In addition, the interaction of Ecgp96 andTLR2 induces a bipartite signal, one from Ecgp96 through PKC‐α while the other from TLR2 through MyD88, ERK1/2 and NF‐κB. This bipartite signal ultimately culminates in the efficient production of NO, which in turn promotes E. coli K1 invasion of HBMEC.  相似文献   

17.
Staphylococcus aureus, a versatile Gram‐positive bacterium, is the main cause of bone and joint infections (BJI), which are prone to recurrence. The inflammasome is an immune signaling platform that assembles after pathogen recognition. It activates proteases, most notably caspase‐1 that proteolytically matures and promotes the secretion of mature IL‐1β and IL‐18. The role of inflammasomes and caspase‐1 in the secretion of mature IL‐1β and in the defence of S. aureus‐infected osteoblasts has not yet been fully investigated. We show here that S. aureus‐infected osteoblast‐like MG‐63 but not caspase‐1 knock‐out CASP1 ?/?MG‐63 cells, which were generated using CRISPR‐Cas9 technology, activate the inflammasome as monitored by the release of mature IL‐1β. The effect was strain‐dependent. The use of S. aureus deletion and complemented phenole soluble modulins (PSMs) mutants demonstrated a key role of PSMs in inflammasomes‐related IL‐1β production. Furthermore, we found that the lack of caspase‐1 in CASP1 ?/?MG‐63 cells impairs their defense functions, as bacterial clearance was drastically decreased in CASP1 ?/? MG‐63 compared to wild‐type cells. Our results demonstrate that osteoblast‐like MG‐63 cells play an important role in the immune response against S. aureus infection through inflammasomes activation and establish a crucial role of caspase‐1 in bacterial clearance.  相似文献   

18.
19.
20.
Neuraminidase protein (NA) of influenza A virus (IAV) is popularly known for its sialidase function to assist in the release of progeny virus. However, involvement of NA in other stages of the IAV life cycle also indicates its multifunctional nature and necessity to interact with other host proteins. Here, we report a host protein—heat shock protein 90 (Hsp90), as a novel interacting partner of IAV NA. A classical yeast two-hybrid screen was conducted to identify a new host interacting partner for NA and the interaction was further validated by coimmunoprecipitation from cells, transiently expressing both proteins and also from IAV-infected cells. Confocal imaging showed that both proteins colocalized in the cytoplasm in transfected host cells. Interestingly, increased levels of NA in the presence of Hsp90 was observed, which tends to decrease if adenosine triphosphatase activity of Hsp90 is inhibited using 17-N-allylamino-17-demethoxygeldanamycin (17AAG). This establishes viral NA as a client protein of host chaperone Hsp90 contributing toward NA's stability via the NA-Hsp90 interaction. This is the first report showing the interaction of NA with Hsp90 and its role in stabilizing viral NA thus preventing it from degradation. Enhanced cell survival in the presence of this interaction was also observed, thus suggesting the requirement of stable viral NA, post-IAV infection, for efficient virus production in infected mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号