首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8108篇
  免费   1128篇
  国内免费   927篇
  2024年   21篇
  2023年   211篇
  2022年   155篇
  2021年   316篇
  2020年   424篇
  2019年   466篇
  2018年   424篇
  2017年   416篇
  2016年   386篇
  2015年   362篇
  2014年   419篇
  2013年   491篇
  2012年   389篇
  2011年   377篇
  2010年   378篇
  2009年   428篇
  2008年   512篇
  2007年   551篇
  2006年   480篇
  2005年   411篇
  2004年   331篇
  2003年   299篇
  2002年   283篇
  2001年   277篇
  2000年   252篇
  1999年   187篇
  1998年   183篇
  1997年   129篇
  1996年   74篇
  1995年   78篇
  1994年   64篇
  1993年   75篇
  1992年   48篇
  1991年   32篇
  1990年   42篇
  1989年   30篇
  1988年   23篇
  1987年   26篇
  1986年   21篇
  1985年   21篇
  1984年   16篇
  1983年   6篇
  1982年   16篇
  1981年   8篇
  1980年   6篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1958年   1篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
31.

Aim

To test the influence of historical and contemporary environment in shaping the genetic diversity of freshwater fauna we contrast genetic structure in two co‐distributed, but ecologically distinct, rainbowfish; a habitat generalist (Melanotaenia splendida) and a habitat specialist (M. trifasciata).

Location

Fishes were sampled from far northern Australia (Queensland and Northern Territory).

Methods

We used sequence data from one mitochondrial gene and one nuclear gene to investigate patterns of genetic diversity in M. splendida and M. trifasciata to determine how differences in habitat preference and historical changes in drainage boundaries affected patterns of connectivity.

Results

Melanotaenia splendida showed high levels of genetic diversity and little population structure across its range. In contrast, M. trifasciata showed high levels of population structure. Whereas phylogeographic patterns differed, both species showed a strong relationship between geographical distance and genetic differentiation between populations. Melanotaenia splendida showed a shallower relationship with geographical distance, and genetic differentiation was best explained by stream length and a lower scaled ocean distance (11.98 times coast length). For M. trifasciata, genetic differentiation was best explained by overwater distance between catchments and ocean distance scaled at 1.16 × 106 times coast length.

Main conclusions

Connectivity of freshwater populations inhabiting regions periodically interconnected during glacial periods appears to have been affected by ecological differences between species. Species‐specific differences are epitomized here by the contrast between co‐distributed congeners with different habitat requirements: for the habitat generalist, M. splendida, there was evidence for greater historical genetic connectivity with oceans as a weaker barrier to gene exchange in contrast with the habitat specialist, M. trifasciata.  相似文献   
32.
As an increasingly dominant feature in the landscape, transportation corridors are becoming a major concern for bats. Although wildlife–vehicle collisions are considered to be a major source of mortality, other negative implications of roads on bat populations are just now being realized. Recent studies have revealed that bats, like many other wildlife species, will avoid roads rather than cross them. The consequence is that roads act as barriers or filters to movement, restricting bats from accessing critical resources. Our objective was to assess specific features along the commuting route, road, or surrounding landscape (alone or in combination) that exacerbated or alleviated the likelihood of a commuting bat exhibiting an avoidance behavior in response to an approaching vehicle. At 5 frequently used commuting routes bisected by roads, we collected data on vehicles travelling along the roads (such as visibility and audibility), commuting bats (such as height), and composition of the commuting route. We revealed that commuting route structure dictated the frequency at which bats turned back along their commuting routes and avoided the road. We found that gaps (>2 m) in commuting routes, such as the road itself, caused bats to turn away just before they reached the road. Furthermore, we found that turning frequencies of bats increased with vehicle noise levels and the locations at which bats responded to vehicles corresponded with areas where noise levels were greatest, including gaps <2 m. This suggested that bats had a disturbance threshold, and only reacted to vehicles when associated noise reached a certain level. We found that threshold levels for our study species were approximately 88 dB, but this value was likely to vary among species. Thus, our findings indicate that restoring (e.g., replanting native trees and shrubs in gaps) and establishing commuting routes (such as planting tree-lines and wooded hedgerows), as well as creating road-crossing opportunities (such as interlinking canopies) will improve the permeability of a road-dominated landscape to bats. Furthermore, our study highlights the influence of the soundscape. We recommend that effective management and mitigation strategies should take into account the ecological design of the acoustic environment. © 2012 The Wildlife Society.  相似文献   
33.
ABSTRACT Telemetry data have been widely used to quantify wildlife habitat relationships despite the fact that these data are inherently imprecise. All telemetry data have positional error, and failure to account for that error can lead to incorrect predictions of wildlife resource use. Several techniques have been used to account for positional error in wildlife studies. These techniques have been described in the literature, but their ability to accurately characterize wildlife resource use has never been tested. We evaluated the performance of techniques commonly used for incorporating telemetry error into studies of wildlife resource use. Our evaluation was based on imprecise telemetry data (mean telemetry error = 174 m, SD = 130 m) typical of field-based studies. We tested 5 techniques in 10 virtual environments and in one real-world environment for categorical (i.e., habitat types) and continuous (i.e., distances or elevations) rasters. Technique accuracy varied by patch size for the categorical rasters, with higher accuracy as patch size increased. At the smallest patch size (1 ha), the technique that ignores error performed best on categorical data (0.31 and 0.30 accuracy for virtual and real data, respectively); however, as patch size increased the bivariate-weighted technique performed better (0.56 accuracy at patch sizes >31 ha) and achieved complete accuracy (i.e., 1.00 accuracy) at smaller patch sizes (472 ha and 1,522 ha for virtual and real data, respectively) than any other technique. We quantified the accuracy of the continuous covariates using the mean absolute difference (MAD) in covariate value between true and estimated locations. We found that average MAD varied between 104 m (ignore telemetry error) and 140 m (rescale the covariate data) for our continuous covariate surfaces across virtual and real data sets. Techniques that rescale continuous covariate data or use a zonal mean on values within a telemetry error polygon were significantly less accurate than other techniques. Although the technique that ignored telemetry error performed best on categorical rasters with smaller average patch sizes (i.e., ≤31 ha) and on continuous rasters in our study, accuracy was so low that the utility of using point-based approaches for quantifying resource use is questionable when telemetry data are imprecise, particularly for small-patch habitat relationships.  相似文献   
34.
35.
36.
Predator exclusion and habitat complexity factors that may affect juvenile red snapper Lutjanus campechanus habitat selection were examined in field and laboratory experiments. A significant predator exclusion effect was detected. Uncaged shell habitats showed significantly lower numbers of age 0 year red snapper, and both uncaged shell and block-shell habitats showed significantly lower numbers of age 1 year red snapper compared with caged habitats ( P < 0·001). Habitat complexity also affected age 0 year red snapper, as mean abundance significantly decreased with decreased habitat complexity ( P < 0·001). In the laboratory, age 0 year red snapper association with complex habitats significantly increased with exposure to a predator Gulf flounder Paralichthys albigutta ( P < 0·001). This study showed that predator exclusion and habitat complexity were significant factors that affected the abundance of juvenile red snapper in nursery areas of the northern Gulf of Mexico. Predation may affect juvenile red snapper abundance directly through mortality and indirectly by influencing habitat selection.  相似文献   
37.
1. Mazerolle et al. (2006) concluded that some aquatic invertebrate species, including bog‐associated species, readily colonise man‐made bog pools. In contrast, in Dutch bog remnants Van Duinen et al. (2003) found that a considerable number of bog‐associated species do not colonise newly created bog pools. 2. The conclusion of Mazerolle et al. (2006) is based on vagile aquatic invertebrates. Here, we question whether their conclusion can be extended to more sedentary species, which were not captured in the Canadian study, but made up an important part of the invertebrate assemblage in the Dutch study. This discrepancy could be caused by sampling artefacts, low colonisation rates of these species or an incomplete restoration of site conditions. 3. In Canada, chances of recolonisation may be higher than in the Netherlands, as natural and near‐natural bogs are more extensive. In the Netherlands, with low chances of recolonisation, persistence of species may be more important. To disentangle the relative importance of persistence and recolonisation, evaluations of the success of restoration projects need to cover the entire invertebrate assemblage, including both vagile and more sedentary species.  相似文献   
38.
Interactions between intrinsic processes and extrinsic fluctuations can positively impact population persistence in ways often not predicted by classic ecological models. These interactions only arise when the intrinsic and extrinsic processes operate on the proper relative scales in time or space. Both metapopulation theory and resonance/attenuation theory suggest that interactions which lower population variability will occur when the intrinsic and extrinsic process occur on similar time scales. I performed an aquatic protist microcosm experiment to investigate how the relative frequencies of extrinsic density perturbations and intrinsic resource pulses impacted population variability. Population variability was lowest in the treatments of intermediate frequency, in which the extrinsic fluctuations and intrinsic processes were on the same time scale. This result is consistent with general theoretical predictions, and empirically documents the importance of considering scale in interactions between intrinsic and extrinsic processes that positively impact population persistence.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号