首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11392篇
  免费   1522篇
  国内免费   2856篇
  2024年   22篇
  2023年   280篇
  2022年   249篇
  2021年   380篇
  2020年   526篇
  2019年   536篇
  2018年   557篇
  2017年   567篇
  2016年   595篇
  2015年   613篇
  2014年   585篇
  2013年   820篇
  2012年   537篇
  2011年   574篇
  2010年   407篇
  2009年   545篇
  2008年   551篇
  2007年   603篇
  2006年   601篇
  2005年   585篇
  2004年   428篇
  2003年   484篇
  2002年   416篇
  2001年   381篇
  2000年   293篇
  1999年   328篇
  1998年   285篇
  1997年   256篇
  1996年   257篇
  1995年   271篇
  1994年   245篇
  1993年   250篇
  1992年   241篇
  1991年   202篇
  1990年   199篇
  1989年   184篇
  1988年   184篇
  1987年   119篇
  1986年   99篇
  1985年   99篇
  1984年   96篇
  1983年   41篇
  1982年   68篇
  1981年   39篇
  1980年   41篇
  1979年   36篇
  1978年   29篇
  1977年   16篇
  1976年   14篇
  1958年   9篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
991.
This study aimed to address the importance of glutamine synthetase II (GSII) during nitrogen assimilation in macroalga Gracilariopsis lemaneiformis. The cDNA full‐length sequence of the three glGSII genes was revealed to have the 5′ m7G cap, 5′‐untranslated region, open reading frame (ORF), 3′‐untranslated region, and a 3′ poly (A) tail. The three glGSIIs were classified into plastid glGS2 and cytosolic glGS1‐1 and glGS1‐2, having conserved GSII domains but different cDNA sequences. The complicated 5′ end flanking region indicates complex function of glGS genes. glGS1 genes were significantly up‐regulated under the different NH4+: NO3? ratio (i.e., 40:10, 25:25, 10:40, and 0:50) except glGS2 which dramatically up‐regulated under the low NH4+: NO3? ratio (i.e., 10:40 and 0:50) during different cultivation times. These different expression patterns perhaps are due to the different biological roles of GS1 and GS2 in the gene family. Furthermore, hypothetical working model of nitrogen assimilation pathway exhibiting the role of glGS1 and glGS2 is proposed. Finally, glGS2 was expressed in Escherichia coli BL21 (DE3), and the optimal conditions for culture (15°C, overnight), purification (500 mM imidazole washing), and activity (pH 7.4, 37°C) were established. This study lays a very important foundation for exploring the role of GS in nitrogen assimilation in algae and plants.  相似文献   
992.
993.
Palaeoecology uses the numerical abundance and the occurrence of species to evaluate the dynamics of past communities, but biomass – the quantity of soft tissue – is the critical currency needed to capture the flow and role of nutrients in modern ecosystems. Acquiring biomass data from fossil assemblages has, however, remained challenging, thus limiting the analysis of net secondary production in palaeocommunities. Prior models relate shell size or shell biovolume to fossil biomass. These models neglect shell fragments and, moreover, use units of biovolume (cm3) that are not directly related to those of biomass (g), making the models difficult to tune and the coefficients highly specific. To remedy these shortcomings, I evaluate skeletal mass as a means of estimating the soft tissue biomass of fossil taxa, using ratios among biomass, skeletal mass and the total wet mass of living representatives of extant species, so that skeletal mass alone can be used to estimate grams of organic biomass. Data on total wet mass, organic carbon mass, and shell mass were acquired from more than 80 live‐collected individuals from eight families in three major, shelly macrobenthic groups (Mollusca, Brachiopoda, Arthropoda) and supplemented with counterpart data from the literature to increase taxonomic breadth. This new shell‐mass model provides more accurate and precise biomass estimates than models based on the linear dimensions of shells, expanding our ability to examine the interplay between organisms and their environments.  相似文献   
994.
Herbivory is one of the key drivers shaping plant community dynamics. Herbivores can strongly influence plant productivity directly through defoliation and the return of nutrients in the form of dung and urine, but also indirectly by reducing the abundance of neighbouring plants and inducing changes in soil processes. However, the relative importance of these processes is poorly understood. We, therefore, established a common garden experiment to study plant responses to defoliation, dung addition, moss cover, and the soil legacy of reindeer grazing. We used an arctic tundra grazed by reindeer as our study system, and Festuca ovina, a common grazing‐tolerant grass species as the model species. The soil legacy of reindeer grazing had the strongest effect on plants, and resulted in higher growth in soils originating from previously heavily‐grazed sites. Defoliation also had a strong effect and reduced shoot and root growth and nutrient uptake. Plants did not fully compensate for the tissue lost due to defoliation, even when nutrient availability was high. In contrast, defoliation enhanced plant nitrogen concentrations. Dung addition increased plant production, nitrogen concentrations and nutrient uptake, although the effect was fairly small. Mosses also had a positive effect on aboveground plant production as long as the plants were not defoliated. The presence of a thick moss layer reduced plant growth following defoliation. This study demonstrates that grasses, even though they suffer from defoliation, can tolerate high densities of herbivores when all aspects of herbivores on ecosystems are taken into account. Our results further show that the positive effect of herbivores on plant growth via changes in soil properties is essential for plants to cope with a high grazing pressure. The strong effect of the soil legacy of reindeer grazing reveals that herbivores can have long‐lasting effects on plant productivity and ecosystem functioning after grazing has ceased.  相似文献   
995.
996.
Rhizosphere microbial community is important for the acquisition of soil nutrients and closely related to plant species. Fertilisation practice changed soil quality. With the hypothesis of stronger rhizosphere effect of plant on rhizosphere microbial community than fertilisation management, we designed this research based on a long‐term field experiment (1982–present). This study consists of no fertilisation (NF), mineral fertilisers (NPK), mineral fertilisers plus 7,500 kg/ha of wheat straw addition (WS) and mineral fertilisers plus 30,000 kg/ha of cow manure (CM). After analysing, we found that fertilisation management not only elevated crop yield but also affected crop rhizosphere microbial community structure. The influence of fertilisation practice on wheat rhizosphere microbial structure was stronger than that of wheat. For wheat rhizosphere bacterial community, it was significantly affected by soil water content (SWC), nitrogen (TN), phosphorus (TP), pH, available phosphorus (AVP) and nitrogen (AVN), dissolved organic nitrogen (DON) and carbon (DOC). Besides SWC, pH, AVP, AVN, TN, TP and DOC, the wheat rhizosphere fungi community was also significantly affected by soil organic matter (SOM) and available potassium (AVK). Moreover, compared to rhizosphere bacterial community, the influences of soil physiochemical properties on rhizosphere fungal community was stronger. In conclusion, fertilisation practice was the primary factor structuring rhizosphere microbial community by changing soil nutrients availabilities in the agroecosystem.  相似文献   
997.
The methanotrophic bacterium Methylococcus capsulatus is capable of assimilating methane and oxygen into protein-rich biomass, however, the diverse metabolism of the microorganism also allows for several undesired cometabolic side-reactions to occur. In this study, the ammonia cometabolism in Methylococcus capsulatus is investigated using pulse experiments. Surprisingly Methylococcus capsulatus oxidizes ammonia to nitrate through a yet unknown mechanism and fixes molecular nitrogen even at a high dissolved oxygen tension. The observed phenomena can be modeled using 14 ordinary differential equations and 18 kinetic parameters, of which 6 were revealed by Morris screening to be identifiable from the experimental data. Monte Carlo simulations showed that the model was robust and accurate even with uncertainty in the parameter values as confirmed by statistical error analysis.  相似文献   
998.
The predatory midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) is widely used for the control of Aphis spp. in many agricultural systems. We aimed to determine the most suitable host plant for rearing the predatory midges on the prey Aphis gossypii Glover (Hemiptera: Aphididae). Six host plants were selected: cucumber (Cucumis sativus L. cv. Beith Alpha), tomato (Solanum lycopersicum L. cv. Falat111), eggplant (Solanum melongena L. cv. Yummy), pepper (Capsicum annuum L. cv. Bertene) (all Solanaceae), okra [Abelmoschus esculentus (L.) Moensch cv. Clemson Spineless] (Malvaceae), and squash (Cucurbita pepo L. cv. Hybrid rajai) (Cucurbitaceae). Some physical traits (length and density of trichomes) and chemical attributes (nitrogen content) of prey host plants were investigated. The results showed that prey host plants differed significantly in their effect on fitness of the predator. The shortest immature development time (18.07 ± 0.257 days), the longest female adult longevity (7.5 ± 0.18 days), and the highest fecundity (89 eggs/female) of A. aphidimyza were found with squash as prey food. The highest intrinsic rate of increase (0.171 ± 0.009 day?1) and also the shortest mean generation time (22.4 ± 0.32 days) were also obtained when A. aphidimyza fed on A. gossypii reared on squash. Canonical correlation analysis (CCA) approved the correlation between life‐history traits of A. aphidimyza and characteristics of prey host plants. The suitability of squash for rearing A. aphidimyza can be attributed to the higher nitrogen content, longer trichomes, and relatively high density of trichomes, which provided a better environment for A. gossypii and indirectly favored A. aphidimyza. This study showed that squash is the most suitable host plant for rearing A. aphidimyza feeding on A. gossypii.  相似文献   
999.
1000.
Global demand to increase food production and simultaneously reduce synthetic nitrogen fertilizer inputs in agriculture are underpinning the need to intensify the use of legume crops. The symbiotic relationship that legume plants establish with nitrogen‐fixing rhizobia bacteria is central to their advantage. This plant–microbe interaction results in newly developed root organs, called nodules, where the rhizobia convert atmospheric nitrogen gas into forms of nitrogen the plant can use. However, the process of developing and maintaining nodules is resource intensive; hence, the plant tightly controls the number of nodules forming. A variety of molecular mechanisms are used to regulate nodule numbers under both favourable and stressful growing conditions, enabling the plant to conserve resources and optimize development in response to a range of circumstances. Using genetic and genomic approaches, many components acting in the regulation of nodulation have now been identified. Discovering and functionally characterizing these components can provide genetic targets and polymorphic markers that aid in the selection of superior legume cultivars and rhizobia strains that benefit agricultural sustainability and food security. This review addresses recent findings in nodulation control, presents detailed models of the molecular mechanisms driving these processes, and identifies gaps in these processes that are not yet fully explained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号