首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   14篇
  国内免费   17篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   8篇
  2018年   2篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   7篇
  2013年   8篇
  2012年   6篇
  2011年   7篇
  2010年   9篇
  2009年   6篇
  2008年   16篇
  2007年   8篇
  2006年   13篇
  2005年   5篇
  2004年   3篇
  2003年   10篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
排序方式: 共有162条查询结果,搜索用时 640 毫秒
71.
The PvD1 defensin was purified from Phaseolus vulgaris (cv. Pérola) seeds, basically as described by Terras et al. [Terras FRG, Schoofs HME, De Bolle MFC, Van Leuven F, Ress SB, Vanderleyden J, Cammue BPA, Broekaer TWF. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 1992;267(22):15301–9], with some modifications. A DEAE-Sepharose, equilibrated with 20 mM Tris–HCl, pH 8.0, was initially utilized for the separation of peptides after ammonium sulfate fractionation. The basic fraction (the non-retained peak) obtained showed the presence of one unique band in SDS–Tricine gel electrophoresis with a molecular mass of approximately 6 kDa. The purification of this peptide was confirmed after a reverse-phase chromatography in a C2/C18 column by HPLC, where once again only one peak was observed and denominated H1. H1 was submitted to N-terminal sequencing and the comparative analysis in databanks revealed high similarity with sequences of different defensins isolated from other plants species. The N-terminal sequence of the mature defensin isolated was used to produce a degenerated primer. This primer allowed the amplification of the defensin cDNA by RT-PCR from mRNA of P. vulgaris seeds. The sequence analysis of the cloned cDNA, named PVD1, demonstrated 314 bp encoding a polypeptide of 47 amino acids. The deduced peptide presented high similarity with plant defensins of Vigna unguiculata (93%), Cicer arietinum (95%) and Pachyrhizus erosus (87%). PvD1 inhibited the growth of the yeasts, Candida albicans, Candida parapsilosis, Candida tropicalis, Candida guilliermondii, Kluyveromyces marxiannus and Saccharomyces cerevisiae. PvD1 also presented an inhibitory activity against the growth of phytopathogenic fungi including Fusarium oxysporum, Fusarium solani, Fusarium lateritium and Rizoctonia solani.  相似文献   
72.
Yokoyama S  Kato K  Koba A  Minami Y  Watanabe K  Yagi F 《Peptides》2008,29(12):2110-2117
Novel antimicrobial peptides (AMP), designated Cy-AMP1, Cy-AMP2, and Cy-AMP3, were purified from seeds of the cycad (Cycas revoluta) by a CM cellulofine column, ion-exchange HPLC on SP COSMOGEL, and reverse-phase HPLC. They had molecular masses of 4583.2 Da, 4568.9 Da and 9275.8 Da, respectively, by MALDI–TOF MS analysis. Half of the amino acid residues of Cy-AMP1 and Cy-AMP2 were cysteine, glycine and proline, and their sequences were similar. The sequence of Cy-AMP3 showed high homology to various lipid transfer proteins. For Cy-AMP1 and Cy-AMP2, the concentrations of peptides required for 50% inhibition (IC50) of the growth of plant pathogenic fungi, Gram-positive and Gram-negative bacteria were 7.0–8.9 μg/ml. The Cy-AMP3 had weak antimicrobial activity. The structural and antimicrobial characteristics of Cy-AMP1 and Cy-AMP2 indicated that they are a novel type of antimicrobial peptide belonging to a plant defensin family.  相似文献   
73.
哺乳动物防御素的研究进展及其应用前景   总被引:30,自引:0,他引:30  
防御素是生物界广泛存在的一类具微生物抗性的低分子短肽,其中哺乳动物防御素的抗性谱最为广泛,具有很高的应用潜力.概述了哺乳动物防御素的组成分布、立体结构、基因表达调控、抗菌谱等的国内外研究进展,并展望了其在医学和植物抗病基因工程中的应用前景.  相似文献   
74.
Salicylic acid (SA)-dependent signaling controls activation of a set of plant defense mechanisms that are important for resistance to a variety of microbial pathogens. Many Arabidopsis mutants that display altered SA-dependent signaling have been isolated. We used double mutant analysis to determine the relative positions of the pad4, cpr1, cpr5, cpr6, dnd1 and dnd2 mutations in the signal transduction network leading to SA-dependent activation of defense gene expression and disease resistance. The pad4 mutation causes failure of SA accumulation in response to infection by certain pathogens, while the other mutations cause constitutively high levels of SA, defense gene expression and resistance. The cpr1 pad4, cpr5 pad4, cpr6 pad4, dnd1 pad4 and dnd2 pad4 double mutants were constructed and assayed for stature, presence of spontaneous lesions, resistance to Pseudomonas syringae and Peronospora parasitica, SA levels, expression of PAD4, PR-1 and PDF1.2, and accumulation of camalexin. We found that the effects of the cpr1 and cpr6 mutations on SA-dependent gene expression are completely dependent on PAD4 function. In contrast, SA accumulation in the lesion-mimic mutant cpr5 is partially PAD4-independent, while in dnd1 and dnd2 mutants it is completely PAD4-independent. A model describing a possible arrangement of activities in the signal transduction network is presented.  相似文献   
75.
The male component of the self-incompatibility response in Brassica has recently been shown to be encoded by the S locus cysteine-rich gene (SCR). SCR is related, at the sequence level, to the pollen coat protein (PCP) gene family whose members encode small, cysteine-rich proteins located in the proteo-lipidic surface layer (tryphine) of Brassica pollen grains. Here we show that the Arabidopsis genome includes two large gene families with homology to SCR and to the PCP gene family, respectively. These genes are poorly predicted by gene-identification algorithms and, with few exceptions, have been missed in previous annotations. Based on sequence comparison and an analysis of the expression patterns of several members of each family, we discuss the possible functions of these genes. In particular, we consider the possibility that SCR-related genes in Arabidopsis may encode ligands for the S gene family of receptor-like kinases in this species.  相似文献   
76.
77.
Botrytis cinerea is a non-specific necrotrophic pathogen that attacks more than 200 plant species. In contrast to biotrophs, the necrotrophs obtain their nutrients by first killing the host cells. Many studies have shown that infection of plants by necrosis-causing pathogens induces a systemic acquired resistance (SAR), which provides protection against successive infections by a range of pathogenic organisms. We analyzed the role of SAR in B. cinerea infection of Arabidopsis. We show that although B. cinerea induced necrotic lesions and camalexin biosynthesis, it did not induce SAR-mediated protection against virulent strains of Pseudomonas syringae, or against subsequent B. cinerea infections. Induction of SAR with avirulent P. syringae or by chemical treatment with salicylic acid (SA) or benzothiadiazole also failed to inhibit B. cinerea growth, although removal of basal SA accumulation by expression of a bacterial salicylate hydroxylase (NahG) gene or by infiltration of 2-aminoindan-2-phosphonic acid, an inhibitor of phenylpropanoid pathway, increased B. cinerea disease symptoms. In addition, we show that B. cinerea induced expression of genes associated with SAR, general stress and ethylene/jasmonate-mediated defense pathways. Thus, B. cinerea does not induce SAR nor is it affected by SAR, making it a rare example of a necrogenic pathogen that does not cause SAR.  相似文献   
78.
Effect of ions on antibacterial activity of human beta defensin 2   总被引:6,自引:0,他引:6  
Human beta defensin 2 (HBD-2), the most recently discovered human defensin, has been considered to work as a host defense substance against microbial infection. Using Escherichia coli ATCC 25922, we investigated how some cations and anions influenced the antimicrobial activity of HBD-2. This activity, measured in 10 mM phosphate buffer at a concentration of 20 microg/ml, reduced significantly in the presence of 100 and 150 mM sodium or potassium chloride. The reduction was not significantly different when the total amounts of sodium and potassium ions were equal. The kind and the valence of anions (chlorine and sulfate ions) did not affect the bactericidal activity as long as the concentrations of sodium ions were equal. Divalent ions (calcium and magnesium ions) added to 10 mM of Tris buffer significantly inactivated HBD-2 at much lower concentrations (more than or equal to 0.01 mM and 0.05 mM, respectively) than the monovalent ions did. These findings suggest that HBD-2 kills the bacteria through at least two phases, which are affected independently by either monovalent or divalent ions and unaffected by anions.  相似文献   
79.
80.
Previously Os, a 22 amino acid sequence of a defensin from the soft tick Ornithodoros savignyi, was found to kill Gram‐positive and Gram‐negative bacteria at low micromolar concentrations. In this study, we evaluated synthetic peptide analogues of Os for antibacterial activity with an aim to identify minimalized active peptide sequences and in so doing obtain a better understanding of the structural requirements for activity. Out of eight partially overlapping sequences of 10 to 12 residues, only Os(3–12) and Os(11–22) exhibit activity when screened against Gram‐positive and Gram‐negative bacteria. Carboxyamidation of both peptides increased membrane‐mediated activity, although carboxyamidation of Os(11–22) negatively impacted on activity against Staphylococcus aureus. The amidated peptides, Os(3–12)NH2 and Os(11–22)NH2, have minimum bactericidal concentrations of 3.3 μM against Escherichia coli. Killing was reached within 10 minutes for Os(3–12)NH2 and only during the second hour for Os(11–22)NH2. In an E. coli membrane liposome system, both Os and Os(3–12)NH2 were identified as membrane disrupting while Os(11–22)NH2 was less active, indicating that in addition to membrane permeabilization, other targets may be involved in bacterial killing. In contrast to Os, the membrane disruptive effect of Os(3–12)NH2 did not diminish in the presence of salt. Neither Os nor its amidated derivatives caused human erythrocyte haemolysis. The contrasting killing kinetics and effects of amidation together with structural and liposome leakage data suggest that the 3–12 fragment relies on a membrane disruptive mechanism while the 11–22 fragment involves additional target mechanisms. The salt‐resistant potency of Os(3–12)NH2 identifies it as a promising candidate for further development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号