首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   19篇
  国内免费   71篇
  2023年   9篇
  2022年   4篇
  2021年   1篇
  2020年   3篇
  2019年   7篇
  2018年   6篇
  2017年   8篇
  2016年   12篇
  2015年   7篇
  2014年   5篇
  2013年   11篇
  2012年   13篇
  2011年   9篇
  2010年   8篇
  2009年   10篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   7篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1992年   1篇
  1982年   1篇
排序方式: 共有152条查询结果,搜索用时 31 毫秒
41.
Aim This paper presents a tool for long‐term global change studies; it is an update of the History Database of the Global Environment (HYDE) with estimates of some of the underlying demographic and agricultural driving factors. Methods Historical population, cropland and pasture statistics are combined with satellite information and specific allocation algorithms (which change over time) to create spatially explicit maps, which are fully consistent on a 5′ longitude/latitude grid resolution, and cover the period 10,000 bc to ad 2000. Results Cropland occupied roughly less than 1% of the global ice‐free land area for a long time until ad 1000, similar to the area used for pasture. In the centuries that followed, the share of global cropland increased to 2% in ad 1700 (c. 3 million km2) and 11% in ad 2000 (15 million km2), while the share of pasture area grew from 2% in ad 1700 to 24% in ad 2000 (34 million km2) These profound land‐use changes have had, and will continue to have, quite considerable consequences for global biogeochemical cycles, and subsequently global climate change. Main conclusions Some researchers suggest that humans have shifted from living in the Holocene (emergence of agriculture) into the Anthropocene (humans capable of changing the Earth's atmosphere) since the start of the Industrial Revolution. But in the light of the sheer size and magnitude of some historical land‐use changes (e.g. as result of the depopulation of Europe due to the Black Death in the 14th century and the aftermath of the colonization of the Americas in the 16th century) we believe that this point might have occurred earlier in time. While there are still many uncertainties and gaps in our knowledge about the importance of land use (change) in the global biogeochemical cycle, we hope that this database can help global (climate) change modellers to close parts of this gap.  相似文献   
42.
不同排放源周边大气环境中NH3浓度动态   总被引:4,自引:0,他引:4  
氨气是大气中重要的碱性气体和细颗粒物(如PM2.5)的重要前提物质。氨主要来自于农业源(氮肥和养殖业)的排放,但随着城市化和工业化进程的加剧,其他氨排放源如城市垃圾填埋场、污水处理厂、城郊集约化养殖场和交通源(汽车尾气)等的贡献已越来越引起人们的关注。为此,本文于2010年4月-2011年3月期间利用ALPHA被动采样器,研究了北京市不同排放源附近NH3浓度的时空变异及其在大气环境保护中的启示。结果表明:大气中NH3的年均浓度可以分为三个层次,以养殖场猪舍内(2479 μg m-3)和垃圾填埋场的原水调节池(2801 μg m-3)浓度最高;其次为养殖场粪水池边(205 μg m-3)和垃圾填埋场厌氧换热工房(198 μg m-3),而交通源附近的公路边(15.2 μg m-3)、垃圾填埋场办公区(11.1 μg m-3)和远郊农田(7.8 μg m-3)浓度相对最低。受垃圾组成,温度及降水的影响,垃圾填埋场原水调节池的NH3浓度变化较大,最高浓度(137 μg m-3)和最低浓度(6581 μg m-3)相差达47倍以上。养殖场猪舍内NH3浓度受温度及窗户开闭的影响,表现出冬季高,夏季低的变化趋势,而猪舍外粪池边则相反。交通源附近由于受高浓度的颗粒物含量和温度影响,NH3浓度表现出夏季高、冬季低的变化规律。农田受施肥和温度的影响,也表现出夏季高、冬季低的季节变化。 从大气浓度推断,单位面积猪舍和填埋场原水调节池NH3排放量远高于施肥农田,均为NH3的重要排放源。另外,我们还发现交通源附近(公路边)的NH3浓度几乎为远郊农田的两倍,提醒人们在关注机动车尾气造成NOX污染的同时,也应重视其NH3排放所致的大气污染,后者与机动车普遍安装的尾气后处理装置(三元催化器)有关。  相似文献   
43.
内蒙古武川县农田退耕还草对中小型土壤动物群落的影响   总被引:2,自引:0,他引:2  
2006年5-9月,以50 mL土壤环刀采集土样,以干、湿漏斗法分离湿生和于生中小型土壤动物,分析了内蒙古武川县农田退耕后不同还草管理措施对中小型土壤动物群落的影响,为退耕还草措施的评价提供依据.试验共捕获中小型土壤动物19845只,隶属于6门8纲8类.优势类群为线虫和线蚓,占总捕获量的比例分别为81.37%和15.68%.与农田比较,不同退耕还草管理方式均导致线虫个体数显著提高(P<0.05),并以退耕后种植菊芋+蒿属植物提高最为突出,线蚓、螨类和弹尾类个体数提高不显著;退耕后,中小型土壤动物群落垂直分布形式无显著变化,但种植紫花苜蓿导致螨类垂直分布的表聚性升高.结果表明:本研究地区所采取的几种农田退耕还草管理措施均对线虫数量的恢复有益;在退耕还草地的管理中,应该注意地表凋落物的保存和积累,以促进螨类和弹尾类数量的恢复.  相似文献   
44.
开垦对绿洲农田碳氮累积及其与作物产量关系的影响   总被引:3,自引:0,他引:3  
黄彩变  曾凡江  雷加强  刘镇  安桂香 《生态学报》2011,31(18):5113-5120
以新疆策勒绿洲近百年来不同开垦年限农田为研究对象,采用空间序列换算时间序列的方法,研究绿洲农田开垦过程中土壤有机碳和全氮密度、碳氮比(C/N)及速效氮含量的垂直变化特征,并探讨了农田土壤碳氮变化与作物产量的关系。结果表明:荒漠土壤开垦后,显著增加了表层土壤(0-20 cm)有机碳和全氮密度,随开垦年限延长对深层土壤(40-200 cm)有机碳密度也有一定的影响,如在开垦30 a左右时下降了36.4%,但在100 a左右时则增加了52.0%。耕层土壤C/N随开垦年限延长而明显增加,深层土壤除100 a农田外其它均有不同程度下降;不同土层C/N与速效氮含量呈负相关关系,仅在开垦初期(0-10 a)达到显著水平。不同年限农田的玉米产量存在显著差异,且和有机碳及全氮密度(0-200 cm)均呈显著正相关;棉花除100和10 a农田产量差异较小外,在其它农田间均达显著水平,但和有机碳及全氮密度无明显相关性。由此可见,在现有投入条件下,提高土壤碳氮累积量对增加玉米产量仍有十分重要作用,但对棉花产量的影响不明显。  相似文献   
45.
研究了半干旱黄土高原区不同退耕模式下植被恢复的比较,对3种不同人工豆科牧草多年生紫花苜蓿alfalfa(Medicago sativa)、多年生沙打旺erect milkvetch(Astragalus adsurgens)、2年生草木樨sweetclover(Melilotus officinalis))和一种自然撂荒(fallow)进行了实地种植比较。通过3a研究发现:紫花苜蓿是耗水最严重的牧草,水分利用效率仅高于撂荒;沙打旺具有最高的地上总生物量和水分利用效率。紫花苜蓿和沙打旺地块中杂草生物量逐年降低,物种数量最低且没有增加。2年生草木樨地物种数和地上生物量逐年增高,草木樨对暴雨的入渗贮存能力最大,显著高于自然撂荒。草木樨结束生活史后第1年地上总生物量(和撂荒一样全为杂草)是撂荒地的两倍,且略高于紫花苜蓿的地上总生物量,同时物种数量也和物种数目最多的撂荒地没有显著差异(p<0.05)。草木樨显著降低了10~40cm土壤剖面的容重,草木樨结束生活史后残留根系有助于深层土壤水分恢复,水分状况恢复良好且优于紫花苜蓿和沙打旺。可见短期的人工干扰下两年生草木樨的种植有利于促进自然植被的恢复,优于自然撂荒和其他牧草种植的方式,容易推广且实际可行。  相似文献   
46.
下辽河平原农田生态系统在管理过程中频繁的耕作、施肥以及农用化学品施用等引发了一系列问题, 如土壤退化、耕地数量减少以及生产力下降等, 不可避免地对土壤生物健康产生影响。为探究农田土壤人工管理对土壤生物群落动态的影响, 本研究在辽宁沈阳农田生态系统国家野外科学观测研究站开展了农田土壤线虫群落组成的季节变化研究, 对4个季节农田和废弃农田(对照)的土壤线虫群落组成、多度以及多样性等进行了比较分析。研究结果表明, 土壤线虫总多度在废弃农田中显著高于农田, 但季节间差异不显著。季节变化主要显著影响了自由生活线虫的多度, 其在9月达到最高; 季节变化也显著影响了属的数量, 其在非生长季的11月最低。与废弃农田相比, 农田管理显著降低了杂食捕食线虫和食真菌线虫的多度, 土壤食物网结构相对稳定; 而废弃的农田更易受到季节波动的影响, 土壤食物网也受到一定的干扰。  相似文献   
47.
明确干旱区农田开垦过程中土壤有机碳变化及其影响因素对评估其固存特征具有重要意义。本研究以乌兰布和沙漠东北部不同开垦年限(2~5、12~15、25~30、40~50年)农田为对象,以未开垦的自然土壤为对照,采用空间代替时间的研究方法,探究农田开垦过程中0~2 m土层内土壤有机碳密度变化特征及其影响因素。结果表明: 随开垦年限的增加,浅层(0~0.4 m)土壤有机碳密度呈持续增加趋势,但农田土壤有机碳密度均处于较低水平(0.990~1.983 kg·m-2)。深层(1.2~2 m)土壤有机碳密度在开垦年限较长(25~30和40~50年)的农田中有所增加,而在开垦年限较短(2~5和12~15年)的农田中无增加趋势。未开垦土壤和各耕作年限农田深层土壤有机碳密度在0~2 m土层中占比较大(28.9%~38.6%)。不同耕作年限农田中土壤有机碳密度随土层深度的增加均呈先减小后增大的二次函数关系,且拟合度较高(R2为0.757~0.972)。土壤黏粒和粉粒含量是影响0~2 m土层有机碳密度的关键因素,且耕作年限对浅层(0~0.4 m)土壤有机碳的积累具有重要促进作用。  相似文献   
48.
Human–wildlife conflict (HWC) has become a conservation focus for both protected area management and local communities in many parts of the world. The incidence and mediation of HWCs are rooted in coupled environmental and socioeconomic contexts. A systematic analysis of HWCs was undertaken in 2016 in the Wolong Nature Reserve located in Sichuan Province, southwestern China. Semi‐structured interviews were conducted with 201 local households to understand the occurrence of wildlife damage, the wildlife species involved, the typical losses incurred, and the mitigation measures employed. The results revealed that local HWC has increased rapidly in recent years due to effective biodiversity conservation and ecological restoration policies. Despite the widespread occurrence of HWCs, with nearly all respondents stating that they had suffered a financial loss, appropriate compensation schemes are lacking. Local respondents' expected compensation amount and style were investigated, and it was concluded that integrated compensation and community development plans are needed to mediate and resolve HWC. In particular, greater attention should be given to reduce local households' dependence on agriculture and transform local livelihood strategies to alternative economic activities not related to farming, such as ecotourism development and migrating employment.  相似文献   
49.
2009年4-10月,通过田间试验,以传统无膜漫灌为对照,研究了膜下滴灌对我国新疆棉田生态系统净初级生产力、土壤异氧呼吸和CO2净交换通量的影响.结果表明:膜下滴灌和无膜漫灌处理下,棉田生态系统净初级生产力、土壤异氧呼吸通量和CO2净交换通量均呈先增大后减小的变化趋势.与无膜漫灌相比,膜下滴灌显著提高了棉花地上、地下生物量和净初级生产力,降低了土壤异氧呼吸通量.在整个生长季节,膜下滴灌处理的年土壤异氧呼吸通量为214 g C·m-2,低于无膜漫灌处理的317 g C·m-2;膜下滴灌处理的棉花年净初级生产力为1030 g C·m-2,显著高于无膜漫灌处理的649 g C·m-2;膜下滴灌处理比无膜漫灌处理多固定大气CO2479 g C·m-2.膜下滴灌栽培措施既提高了作物生产力,又降低了土壤CO2排放,是干旱地区一种重要的农业固碳减排措施.  相似文献   
50.
近地层高浓度臭氧(O3)对农作物生长和产量形成有明显的影响。利用在中国科学院禹城综合试验站(山东省)冬小麦(Triticum aestivum)农田生态系统上观测的O3浓度及微气象资料, 分析了鲁西北平原冬小麦农田生态系统O3浓度的日变化和季节变化规律, 在此基础上初步分析了O3浓度与CO2通量(Fc)的关系, 并用欧洲和美国科学家在实验室得到的O3浓度-冬小麦产量关系模型估算了O3对冬小麦产量的潜在影响。结果表明: O3浓度存在明显的日变化规律, 日最小值和最大值分别出现在7:00和16:00左右。整个观测期间(2011年3-5月)平均O3浓度为(30.4 ± 20.1) nL·L -1(平均值±标准误差); 30 min平均浓度的最大值为93.1 nL·L -1。在冬小麦春季生长季节, O3浓度日平均值呈现逐步增加的趋势, O3浓度日均增加约为0.17 nL·L -1·d -1; 白天7 h和12 h平均浓度(M7和M12)分别为45.7和43.1 nL·L -1; O3浓度超过40 nL·L -1的3个月累积值(AOT40)为9.8 μL·L -1·h; 超过60 nL·L -1的O3浓度累积值(SUM06)为12.6 μL·L -1·h; 经过权重修正的O3污染指标W126为10.1 μL·L -1·h。在高浓度O3 (>60 nL·L -1)情况下, CO2通量与O3浓度呈现负相关关系, 鲁西北平原O3对冬小麦光合作用影响的阈值取60 nL·L -1比较合适, 该值高于欧洲国家普遍采用的40 nL·L -1。基于以上结果, 初步估算得出: 在目前的O3浓度水平下, 鲁西北平原近地层O3可能会使冬小麦产量减少5.2%-8.8%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号