首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2252篇
  免费   122篇
  国内免费   202篇
  2024年   4篇
  2023年   45篇
  2022年   42篇
  2021年   62篇
  2020年   73篇
  2019年   57篇
  2018年   83篇
  2017年   53篇
  2016年   66篇
  2015年   62篇
  2014年   96篇
  2013年   142篇
  2012年   41篇
  2011年   105篇
  2010年   102篇
  2009年   121篇
  2008年   110篇
  2007年   120篇
  2006年   109篇
  2005年   110篇
  2004年   92篇
  2003年   76篇
  2002年   79篇
  2001年   55篇
  2000年   50篇
  1999年   49篇
  1998年   46篇
  1997年   41篇
  1996年   34篇
  1995年   35篇
  1994年   33篇
  1993年   32篇
  1992年   27篇
  1991年   23篇
  1990年   19篇
  1989年   26篇
  1988年   26篇
  1987年   7篇
  1986年   14篇
  1985年   19篇
  1984年   27篇
  1983年   25篇
  1982年   28篇
  1981年   17篇
  1980年   26篇
  1979年   22篇
  1978年   16篇
  1977年   12篇
  1976年   4篇
  1972年   4篇
排序方式: 共有2576条查询结果,搜索用时 953 毫秒
91.
92.
93.
Obtaining detailed structural models of disordered states of proteins under nondenaturing conditions is important for a better understanding of both functional intrinsically disordered proteins and unfolded states of folded proteins. Extensive experimental characterization of the drk N-terminal SH3 domain unfolded state has shown that, although it appears to be highly disordered, it possesses significant nonrandom secondary and tertiary structure. In our previous attempts to generate structural models of the unfolded state using the program ENSEMBLE, we were limited by insufficient experimental restraints and conformational sampling. In this study, we have vastly expanded our experimental restraint set to include 1H-15N residual dipolar couplings, small-angle X-ray scattering measurements, nitroxide paramagnetic relaxation enhancements, O2-induced 13C paramagnetic shifts, hydrogen-exchange protection factors, and 15N R2 data, in addition to the previously used nuclear Overhauser effects, amino terminal Cu2+-Ni2+ binding paramagnetic relaxation enhancements, J-couplings, chemical shifts, hydrodynamic radius, and solvent accessibility restraints. We have also implemented a new ensemble calculation methodology that uses iterative conformational sampling and seeks to calculate the simplest possible ensemble models. As a result, we can now generate ensembles that are consistent with much larger experimental data sets than was previously possible. Although highly heterogeneous and having broad molecular size distributions, the calculated drk N-terminal SH3 domain unfolded-state ensembles have very different properties than expected for random or statistical coils and possess significant nonnative α-helical structure and both native-like and nonnative tertiary structure.  相似文献   
94.
Teicoplanin, a member of the “last chance” antibiotic family has a similar structure and the same mechanism of action as parent drug vancomycin, which is proved to be an effective binder of Cu(II) ions. However, the potentiometric and spectroscopic studies (UV-visible, CD, NMR) have shown that the modification of the N-terminal structure of the peptide backbone in teicoplanin affects considerably the binding ability towards Cu(II) ions. While vancomycin forms almost instantly the stable 3 N complex species involving the N-terminal and two amide nitrogen donors, in case of teicoplanin only two nitrogen donors derived from the N-terminal amino group and adjacent peptide bond are coordinated to Cu(II) ion within the whole pH range studied. The major factor influencing the binding mode is most likely the structure of the N-terminus of the peptide unit in the antibiotic ligand.  相似文献   
95.
The first part of this review on entropic elastic processes in protein mechanisms (Urry, 1988) demonstrated with the polypentapeptide of elastin (Val1-Pro2-Gly3-Val4-Gly5)n that elastic structure develops as the result of an inverse temperature transition and that entropic elasticity is due to internal chain dynamics in a regular nonrandom structure. This demonstration is contrary to the pervasive perspective of entropic protein elasticity of the past three decades wherein a network of random chains has been considered the necessary structural consequence of the occurrence of dominantly entropic elastomeric force. That this is not the case provides a new opportunity for understanding the occurrence and role of entropic elastic processes in protein mechanisms. Entropic elastic processes are considered in two classes: passive and active. The development of elastomeric force on deformation is class I (passive) and the development of elastomeric force as the result of a chemical process shifting the temperature of a transition is class II (active). Examples of class I are elastin, the elastic filament of muscle, elastic force changes in enzyme catalysis resulting from binding processes and resulting in the straining of a scissile bond, and in the turning on and off of channels due to changes in transmembrane potential. Demonstration of the consequences of elastomeric force developing as the result of an inverse temperature transition are seen in elastin, where elastic recoil is lost on oxidation, i.e., on decreasing the hydrophobicity of the chain and shifting the temperature for the development of elastomeric force to temperatures greater than physiological. This is relevant in general to loss of elasticity on aging and more specifically to the development of pulmonary emphysema. Since random chain networks are not the products of inverse temperature transitions and the temperature at which an inverse temperature transition occurs depends on the hydrophobicity of the polypeptide chain, it now becomes possible to consider chemical processes for turning elastomeric force on and off by reversibly changing the hydrophobicity of the polypeptide chain. This is herein called mechanochemical coupling of the first kind; this is the chemical modulation of the temperature for the transition from a less-ordered less elastic state to a more-ordered more elastic state. In the usual considerations to date, development of elastomeric force is the result of a standard transition from a more-ordered less elastic state to a less-ordered more elastic state. When this is chemically modulated, it is herein called mechanochemical coupling of the second kind. For elastin and the polypentapeptide of elastin, since entropic elastomeric force results on formation of a regular nonrandom structure and thermal randomization of chains results in loss of elastic modulus to levels of limited use in protein mechanisms, consideration of regular spiral-like structures rather than ramdom chain networks or random coils are proposed for mechanochemical coupling of the second kind. Chemical processes to effect mechanochemical coupling in biological systems are most obviously phosphorylation-dephosphorylation and changes in calcium ion activity but also changes in pH. These issues are considered in the events attending parturition in muscle contraction and in cell motility.  相似文献   
96.
Two different kinds of bioprocess, ethanol fermentation and subsequent microbial esterification, were coupled using Issatchenkia terricola IFO 0933 in an interface bioreactor. The strain produced ethyl decanoate (Et-DA) by esterification of exogenous decanoic acid (DA) with ethanol produced via fermentation. The efficiency of the new coupling system depended on the concentration of glucose in a carrier and DA in an organic phase (decane) in an agar plate interface bioreactor. Optimum glucose content and DA concentration were 4% and 29 mM, respectively.  相似文献   
97.
Cotton fabrics were dyed with dyes generated in situ by laccase-catalyzed oxidative coupling of the colorless 2,5-diaminobenzenesulfonic acid (2,5-DABSA) and 1-hydroxyphenol (catechol). The enzymatic oxidation of the dye intermediates led to cross-coupling reaction products when the reaction was conducted with an excess of catechol. At least fourfold excess of catechol was necessary to achieve satisfactory dye fixation on cotton. Formation of the same colored product using either an equimolar ratio of the reagents or tenfold excess of catechol was observed. Most probably, homo-molecular reactions predominate over the cross-coupling at equimolar ratio of the precursors, while with an excess of catechol, the cross-coupling occurs in higher yield. The reaction was followed using UV-Vis spectroscopy, HPLC, FTIR and MALDI-TOF MS. A reaction pathway for laccase-induced cross-coupling of catechol and 2,5-DABSA yielding a major colored product was proposed.  相似文献   
98.
Several orders of morphologically four‐winged insects have evolved mechanisms that enforce a union between the mesothoracic and metathoracic wings (forewings and hindwings) during the wing beat cycle. Such mechanisms result in a morphologically tetrapterous insect flying as if it were functionally dipterous, and these mechanisms have been described for several insect orders. The caddisfly suborders Annulipalpia and Integripalpia (Trichoptera) each have evolved a wing coupling apparatus, with at least three systems having evolved within the suborder Annulipalpia. The comparative and inferred functional morphology of the putative wing coupling mechanisms is described for the annulipalpian families Hydropsychidae (subfamilies Macronematinae and Hydropsychinae), Polycentropodidae and Ecnomidae, and a novel form‐functional complex putatively involved with at‐rest forewing‐forewing coupling is described for Hydropsychidae: Smicrideinae. It is proposed that the morphology of the wing coupling apparatuses of Hydropsychinae and Macronematinae are apomorphies for those clades. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
99.
Alzheimer's disease (AD) is a neurodegenerative disorder that leads to age‐related cognitive and sensori‐motor dysfunction. There is an increased understanding that motor dysfunction contributes to overall AD severity, and a need to ameliorate these impairments. The 5xFAD mouse develops the neuropathology, cognitive and motor impairments observed in AD, and thus may be a valuable animal model to study motor deficits in AD. Therefore, we assessed age‐related changes in motor ability of male and female 5xFAD mice from 3 to 16 months of age, using a battery of behavioral tests. At 9‐10 months, 5xFAD mice showed reduced body weight, reduced rearing in the open‐field and impaired performance on the rotarod compared to wild‐type controls. At 12‐13 months, 5xFAD mice showed reduced locomotor activity on the open‐field, and impaired balance on the balance beam. At 15‐16 months, impairments were also seen in grip strength. Although sex differences were observed at specific ages, the development of motor dysfunction was similar in male and female mice. Given the 5xFAD mouse is commonly on a C57BL/6 × SJL hybrid background, a subset of mice may be homozygous recessive for the Dysf im mutant allele, which leads to muscular weakness in SJL mice and may exacerbate motor dysfunction. We found small effects of Dysf im on motor function, suggesting that Dysf im contributes little to motor dysfunction in 5xFAD mice. We conclude that the 5xFAD mouse may be a useful model to study mechanisms that produce motor dysfunction in AD, and to assess the efficacy of therapeutics on ameliorating motor impairment.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号