首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   831篇
  免费   188篇
  国内免费   116篇
  2024年   2篇
  2023年   38篇
  2022年   26篇
  2021年   69篇
  2020年   76篇
  2019年   92篇
  2018年   78篇
  2017年   75篇
  2016年   72篇
  2015年   78篇
  2014年   68篇
  2013年   45篇
  2012年   56篇
  2011年   44篇
  2010年   36篇
  2009年   46篇
  2008年   49篇
  2007年   49篇
  2006年   33篇
  2005年   26篇
  2004年   8篇
  2003年   13篇
  2002年   12篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   2篇
  1982年   1篇
  1978年   1篇
排序方式: 共有1135条查询结果,搜索用时 906 毫秒
81.
The perspective of 'biocomplexity' in the form of 'coupled natural and human systems' represents a resource for the future conservation of biodiversity hotspots in three direct ways: (i) modelling the impact on biodiversity of private land-use decisions and public land-use policies, (ii) indicating how the biocultural history of a biodiversity hotspot may be a resource for its future conservation, and (iii) identifying and deploying the nodes of both the material and psycho-spiritual connectivity between human and natural systems in service to conservation goals. Three biocomplexity case studies of areas notable for their biodiversity, selected for their variability along a latitudinal climate gradient and a human-impact gradient, are developed: the Big Thicket in southeast Texas, the Upper Botanamo River Basin in eastern Venezuela, and the Cape Horn Archipelago at the austral tip of Chile. More deeply, the biocomplexity perspective reveals alternative ways of understanding biodiversity itself, because it directs attention to the human concepts through which biodiversity is perceived and understood. The very meaning of biodiversity is contestable and varies according to the cognitive lenses through which it is perceived.  相似文献   
82.
Lu CH  Chen YC  Yu CS  Hwang JK 《Proteins》2007,67(2):262-270
Disulfide bonds play an important role in stabilizing protein structure and regulating protein function. Therefore, the ability to infer disulfide connectivity from protein sequences will be valuable in structural modeling and functional analysis. However, to predict disulfide connectivity directly from sequences presents a challenge to computational biologists due to the nonlocal nature of disulfide bonds, i.e., the close spatial proximity of the cysteine pair that forms the disulfide bond does not necessarily imply the short sequence separation of the cysteine residues. Recently, Chen and Hwang (Proteins 2005;61:507-512) treated this problem as a multiple class classification by defining each distinct disulfide pattern as a class. They used multiple support vector machines based on a variety of sequence features to predict the disulfide patterns. Their results compare favorably with those in the literature for a benchmark dataset sharing less than 30% sequence identity. However, since the number of disulfide patterns grows rapidly when the number of disulfide bonds increases, their method performs unsatisfactorily for the cases of large number of disulfide bonds. In this work, we propose a novel method to represent disulfide connectivity in terms of cysteine pairs, instead of disulfide patterns. Since the number of bonding states of the cysteine pairs is independent of that of disulfide bonds, the problem of class explosion is avoided. The bonding states of the cysteine pairs are predicted using the support vector machines together with the genetic algorithm optimization for feature selection. The complete disulfide patterns are then determined from the connectivity matrices that are constructed from the predicted bonding states of the cysteine pairs. Our approach outperforms the current approaches in the literature.  相似文献   
83.
Migratory movements of the endangered stag beetles Lucanus cervus (18 males, 38 females) were monitored radio-telemetrically for three reproductive periods (2003–2005). The aim of the study was to estimate the migratory range of free-ranging individuals as a measure of connectivity among neighbouring populations for future conservation measures. Miniature transmitters of c . 350 mg (battery life: 10–15 days) were attached externally to the pronotum. Transmitter/beetle mass ratio was 12.8% on average (7.1–28.0%). Male dispersal behaviour consisted of frequent flights directed to sites with reproductive females and rarely of on-ground movement. Total displacement distance recorded was up to 2065 m, the maximum distance of a single flight being 1720 m. Flights always began at elevated structures such as trees and shrubs and took place in an air temperature range of 11–27°C. Within this range, temperature did not influence flight distance. Female dispersal behaviour consisted mostly of a single flight, followed by mating and consequent ground movements towards oviposition sites. Total displacement distance recorded was up to 762.6 m, the maximum distance of a single flight being 701 m. Climatic constraints of flights were the same as in males. Modelling the dispersal behaviour suggests that about 1% of males are capable of maintaining gene flux among nest sites within a radius of about 3 km. However, the colonization of new nest sites depends on the dispersal ability of females and amounts to less than 1 km. Thus, isolated populations (distance to the next population greater than 3 km) have an increased probability of local extinction.  相似文献   
84.
85.
雪豹是全球生物多样性保护的旗舰物种,精准评估雪豹栖息地质量可为其种群保护提供科学参考。本文选取地形、气候、植被类型和人为干扰等环境因子,采用景观连接度和MaxEnt模型两种方法,对祁连山国家公园青海片区雪豹栖息地质量进行评价。结果表明:高适宜栖息地主要分布在研究区的西部和中部,适宜面积占青海片区总面积的71.8% ~ 77.5%,两种方法预测的适宜栖息地重叠区为8 979.1 km2,占青海片区总面积的56.7%;39.8% ~ 43.3%的适宜栖息地分布在一般控制区,56.7% ~ 60.2%的适宜栖息地分布在核心保护区;疏勒河源区适宜栖息地面积最多,石羊河源区适宜栖息地面积最少,黑河源区适宜栖息地面积占比最高,约为77.1% ~ 91.8%。适宜栖息地面积整体呈现自东向西递增的趋势。一般控制区分布有较大面积的雪豹栖息地,人类活动将是一般控制区雪豹栖息地的潜在威胁。本研究对优化雪豹就地保护措施提供科学借鉴与参考。  相似文献   
86.
The Asian green mussel Perna viridis is ecologically and economically important in the coastal regions of China. In order to characterize the genetic diversity and population connectivity of P. viridis in South China Sea, a 664 bp region of mitochondrial COI gene and a 293 bp region of 16S rRNA gene were sequenced and analyzed for 78 and 92 individuals from four populations in South China Sea, respectively. A total of 15 haplotypes were defined by 14 variable nucleotide sites in COI gene, and 7 haplotypes by 6 variable nucleotide sites in 16S rRNA gene. High haplotype diversity and low nucleotide diversity were observed in COI gene, while moderate haplotype diversity and low nucleotide diversity were observed in 16S rRNA gene. Pairwise FST values of COI gene were all negative and those of 16S rRNA gene ranged from −0.01409 to 0.10289. The results showed that no significant genetic divergence (or shallow genetic structure) and high levels of population connectivity among the four populations of P. viridis in South China Sea.  相似文献   
87.
A detailed understanding of the genetic structure of populations and an accurate interpretation of processes driving contemporary patterns of gene flow are fundamental to successful spatial conservation management. The field of seascape genetics seeks to incorporate environmental variables and processes into analyses of population genetic data to improve our understanding of forces driving genetic divergence in the marine environment. Information about barriers to gene flow (such as ocean currents) is used to define a resistance surface to predict the spatial genetic structure of populations and explain deviations from the widely applied isolation-by-distance model. The majority of seascape approaches to date have been applied to linear coastal systems or at large spatial scales (more than 250 km), with very few applied to complex systems at regional spatial scales (less than 100 km). Here, we apply a seascape genetics approach to a peripheral population of the broadcast-spawning coral Acropora spicifera across the Houtman Abrolhos Islands, a high-latitude complex coral reef system off the central coast of Western Australia. We coupled population genetic data from a panel of microsatellite DNA markers with a biophysical dispersal model to test whether oceanographic processes could explain patterns of genetic divergence. We identified significant variation in allele frequencies over distances of less than 10 km, with significant differentiation occurring between adjacent sites but not between the most geographically distant ones. Recruitment probabilities between sites based on simulated larval dispersal were projected into a measure of resistance to connectivity that was significantly correlated with patterns of genetic divergence, demonstrating that patterns of spatial genetic structure are a function of restrictions to gene flow imposed by oceanographic currents. This study advances our understanding of the role of larval dispersal on the fine-scale genetic structure of coral populations across a complex island system and applies a methodological framework that can be tailored to suit a variety of marine organisms with a range of life-history characteristics.  相似文献   
88.
Connectivity among populations determines the dynamics and evolution of populations, and its assessment is essential in ecology in general and in conservation biology in particular. The robust basis of any ecological study is the accurate delimitation of evolutionary units, such as populations, metapopulations and species. Yet a disconnect still persists between the work of taxonomists describing species as working hypotheses and the use of species delimitation by molecular ecologists interested in describing patterns of gene flow. This problem is particularly acute in the marine environment where the inventory of biodiversity is relatively delayed, while for the past two decades, molecular studies have shown a high prevalence of cryptic species. In this study, we illustrate, based on marine case studies, how the failure to recognize boundaries of evolutionary‐relevant unit leads to heavily biased estimates of connectivity. We review the conceptual framework within which species delimitation can be formalized as falsifiable hypotheses and show how connectivity studies can feed integrative taxonomic work and vice versa. Finally, we suggest strategies for spatial, temporal and phylogenetic sampling to reduce the probability of inadequately delimiting evolutionary units when engaging in connectivity studies.  相似文献   
89.
RNA viruses exist as complex mixtures of genotypes, known as quasispecies, where the evolution potential resides in the whole community of related genotypes. Quasispecies structure and dynamics have been studied in detail for virus infecting animals and plants but remain unexplored for those infecting micro‐organisms in environmental samples. We report the first metagenomic study of RNA viruses in an Antarctic lake (Lake Limnopolar, Livingston Island). Similar to low‐latitude aquatic environments, this lake harbours an RNA virome dominated by positive single‐strand RNA viruses from the order Picornavirales probably infecting micro‐organisms. Antarctic picorna‐like virus 1 (APLV1), one of the most abundant viruses in the lake, does not incorporate any mutation in the consensus sequence from 2006 to 2010 and shows stable quasispecies with low‐complexity indexes. By contrast, APLV2‐APLV3 are detected in the lake water exclusively in summer samples and are major constituents of surrounding cyanobacterial mats. Their quasispecies exhibit low complexity in cyanobacterial mat, but their run‐off‐mediated transfer to the lake results in a remarkable increase of complexity that may reflect the convergence of different viral quasispecies from the catchment area or replication in a more diverse host community. This is the first example of viral quasispecies from natural aquatic ecosystems and points to ecological connectivity as a modulating factor of quasispecies complexity.  相似文献   
90.
Dispersal and gene flow within animal populations are influenced by the composition and configuration of the landscape. In this study, we evaluated hypotheses about the impact of natural and anthropogenic factors on genetic differentiation in two amphibian species, the spotted salamander (Ambystoma maculatum) and the wood frog (Lithobates sylvaticus) in a commercial forest in central Maine. We conducted this analysis at two scales: a local level, focused on factors measured at each breeding pond, and a landscape level, focused on factors measured between ponds. We investigated the effects of a number of environmental factors in six categories including Productivity, Physical, Land Composition, Land Configuration, Isolation and Location. Embryos were sampled from 56 spotted salamander breeding ponds and 39 wood frog breeding ponds. We used a hierarchical Bayesian approach in the program GESTE at each breeding pond and a random forest algorithm in conjunction with a network analysis between the ponds. We found overall high genetic connectivity across distances up to 17 km for both species and a limited effect of natural and anthropogenic factors on gene flow. We found the null models best explained patterns of genetic differentiation at a local level and found several factors at the landscape level that weakly influenced gene flow. This research indicates multiscale investigations that incorporate local and landscape factors are valuable for understanding patterns of gene flow. Our findings suggest that dispersal rates in this system are high enough to minimize genetic structuring and that current forestry practices do not significantly impede dispersal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号