首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4365篇
  免费   222篇
  国内免费   280篇
  2023年   39篇
  2022年   44篇
  2021年   133篇
  2020年   97篇
  2019年   100篇
  2018年   108篇
  2017年   88篇
  2016年   89篇
  2015年   127篇
  2014年   217篇
  2013年   298篇
  2012年   208篇
  2011年   172篇
  2010年   139篇
  2009年   197篇
  2008年   186篇
  2007年   191篇
  2006年   212篇
  2005年   195篇
  2004年   185篇
  2003年   196篇
  2002年   186篇
  2001年   183篇
  2000年   164篇
  1999年   107篇
  1998年   120篇
  1997年   91篇
  1996年   99篇
  1995年   83篇
  1994年   73篇
  1993年   64篇
  1992年   57篇
  1991年   36篇
  1990年   45篇
  1989年   43篇
  1988年   42篇
  1987年   45篇
  1986年   21篇
  1985年   21篇
  1984年   34篇
  1983年   11篇
  1982年   15篇
  1981年   21篇
  1980年   17篇
  1979年   21篇
  1978年   17篇
  1977年   9篇
  1976年   6篇
  1974年   4篇
  1972年   3篇
排序方式: 共有4867条查询结果,搜索用时 171 毫秒
141.
《Free radical research》2013,47(4):523-530
Abstract

In the tide of science nouveau after the completion of genome projects of various species, there appeared a movement to understand an organism as a system rather than the sum of cells directed for certain functions. With the advent and spread of microarray techniques, systematic and comprehensive genome-wide approaches have become reasonably possible and more required on the investigation of DNA damage and the subsequent repair. The immunoprecipitation-based technique combined with high-density microarrays or next-generation sequencing is one of the promising methods to provide access to such novel research strategies. Oxygen is necessary for most of the life on earth for electron transport. However, reactive oxygen species are inevitably generated, giving rise to steady-state levels of DNA damage in the genome, that may cause mutations leading to cancer, ageing and degenerative diseases. Previously, we showed that there are many factors involved in the genomic distribution of oxidatively generated DNA damage including chromosome territory, and proposed this sort of research area as oxygenomics. Recently, RNA is also recognized as a target of this kind of modification.  相似文献   
142.
Abstract

A karyological analysis carried out in Scilla hyacinthoides L. and Scilla amoena L. on material collected in the Botanical Garden of Cagliari (Sardinia), has shown the presence of heterozygous karyotypes in the two species. The chromosome number of S. hyacinthoides was found to be 2n = 20, while the chromosome number of S. amoena was 2n = 12, in accordance with the data found in the literature. Both the observed karyotypes show clear structural alterations, especially evident in one pair of clearly heteromorphic chromosomes. The analysis of the karyotypes seem to exclude a hybrid origin of the material examined and it is probable that such karyotypes may be the result of various structural re-arrangements, still evolving and aiming at a cytogenetic stabilization of the genus Scilla.  相似文献   
143.
Reproductive division of labor is a hallmark of social insect societies where individuals follow different developmental pathways resulting in distinct morphological castes. There has been a long controversy over the factors determining caste fate of individuals in social insects. Increasing evidence in the last two decades for heritable influences on division of labor put an end to the assumption that social insect broods are fully totipotent and environmental factors alone determine castes. Nevertheless, the genes that underlie hereditary effects on division of labor have not been identified in any social insects. Studies investigating the hereditary effects on caste determination might have overlooked non-genetic inheritance, while transmission to offspring of factors other than DNA sequences including epigenetic states can also affect offspring phenotype. Genomic imprinting is one of the most informative paradigms for understanding the consequences of interactions between the genome and the epigenome. Recent studies of genomic imprinting show that genes can be differentially marked in egg and sperm and inheritance of these epigenetic marks cause genes to be expressed in a parental-origin-specific manner in the offspring. By reviewing both the eusocial Hymenoptera and termites, I highlight the current theoretical and empirical evidence for genomic imprinting in eusocial insects and discuss how genomic imprinting acts in caste determination and social behavior and challenges for future studies. I also introduce the new idea that genomic imprinting plays an essential role in the origin of eusociality.  相似文献   
144.
145.
The Cre/loxP system is a powerful tool that has allowed the study of the effects of specific genes of interest in various biological settings. The Tyr::CreERT2 system allows for the targeted expression and activity of the Cre enzyme in the melanocyte lineage following treatment with tamoxifen, thus providing spatial and temporal control of the expression of specific target genes. Two independent transgenic mouse models, each containing a Tyr::CreERT2 transgene, have been generated and are widely used to study melanocyte transformation. In this study, we performed whole genome sequencing (WGS) on genomic DNA from the two Tyr::CreERT2 mouse models and identified their sites of integration in the C57BL/6 genome. Based on these results, we designed PCR primers to accurately, and efficiently, genotype transgenic mice. Finally, we discussed some of the advantages of each transgenic mouse model.  相似文献   
146.
Antheraea pernyi is a semi‐domesticated lepidopteran insect species valuable to the silk industry, human health, and ecological tourism. Owing to its economic influence and developmental properties, it serves as an ideal model for investigating divergence of the Bombycoidea super family. However, studies on the karyotype evolution and functional genomics of A. pernyi are limited by scarce genomic resource. Here, we applied PacBio sequencing and chromosome structure capture technique to assemble the first high‐quality A. pernyi genome from a single male individual. The genome is 720.67 Mb long with 49 chromosomes and a 13.77‐Mb scaffold N50. Approximately 441.75 Mb, accounting for 60.74% of the genome, was identified as repeats. The genome comprises 21,431 protein‐coding genes, 85.22% of which were functionally annotated. Comparative genomics analysis suggested that A. pernyi diverged from its common ancestor with A. yamamai ~30.3 million years ago, and that chromosome fission contributed to the increased chromosome number. The genome assembled in this work will not only facilitate future research on A. pernyi and related species but also help to progress comparative genomics analyses in Lepidoptera.  相似文献   
147.
148.
Dendrolimus spp. are important destructive pests of conifer forests, and Dendrolimus punctatus Walker (Lepidoptera; Lasiocampidae) is the most widely distributed Dendrolimus species. During periodic outbreaks, this species is said to make “fire without smoke” because large areas of pine forest can be quickly and heavily damaged. Yet, little is known about the molecular mechanisms that underlie the unique ecological characteristics of this forest insect. Here, we combined Pacific Biosciences (PacBio) RSII single‐molecule long reads and high‐throughput chromosome conformation capture (Hi‐C) genomics‐linked reads to produce a high‐quality, chromosome‐level reference genome for D. punctatus. The final assembly was 614 Mb with contig and scaffold N50 values of 1.39 and 22.15 Mb, respectively, and 96.96% of the contigs anchored onto 30 chromosomes. Based on the prediction, this genome contained 17,593 protein‐coding genes and 56.16% repetitive sequences. Phylogenetic analyses indicated that D. punctatus diverged from the common ancestor of Hyphantria cunea, Spodoptera litura and Thaumetopoea pityocampa ~ 108.91 million years ago. Many gene families that were expanded in the D. punctatus genome were significantly enriched for the xenobiotic biodegradation system, especially the cytochrome P450 gene family. This high‐quality, chromosome‐level reference genome will be a valuable resource for understanding mechanisms of D. punctatus outbreak and host resistance adaption. Because this is the first Lasiocampidae insect genome to be sequenced, it also will serve as a reference for further comparative genomics.  相似文献   
149.
Molecular recognition displayed by naturally occurring receptors has continued to inspire new innovations aimed at developing systems that can mimic this natural phenomenon. Since 1930s, a technology called molecular imprinting for producing biomimetic receptors has been in place. In this technology, tailor made binding sites that selectively bind a given target analyte (also called template) are incorporated in a polymer matrix by polymerizing functional monomers and cross‐linking monomers around a target analyte followed by removal of the analyte to leave behind cavities specific to the analyte. The success of the imprinting process is defined by two main figures of merit, that is, the imprinting factor, and selectivity, which are determined by comparing the amount of target analyte or structural analogue bound by the molecularly imprinted polymer (MIP) and the nonimprinted polymer (NIP). NIP is a control synthesized alongside the MIP but in the absence of the template. However, questions arise on whether these figures of merit are reliable measures of the imprinting effect because of the significant differences between the MIP and the NIP in terms of their physical and chemical characteristics. Therefore, this review critically looks into this subject, with a view of defining the best approaches for determining the imprinting effect.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号