首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
Antheraea pernyi is a semi‐domesticated lepidopteran insect species valuable to the silk industry, human health, and ecological tourism. Owing to its economic influence and developmental properties, it serves as an ideal model for investigating divergence of the Bombycoidea super family. However, studies on the karyotype evolution and functional genomics of A. pernyi are limited by scarce genomic resource. Here, we applied PacBio sequencing and chromosome structure capture technique to assemble the first high‐quality A. pernyi genome from a single male individual. The genome is 720.67 Mb long with 49 chromosomes and a 13.77‐Mb scaffold N50. Approximately 441.75 Mb, accounting for 60.74% of the genome, was identified as repeats. The genome comprises 21,431 protein‐coding genes, 85.22% of which were functionally annotated. Comparative genomics analysis suggested that A. pernyi diverged from its common ancestor with A. yamamai ~30.3 million years ago, and that chromosome fission contributed to the increased chromosome number. The genome assembled in this work will not only facilitate future research on A. pernyi and related species but also help to progress comparative genomics analyses in Lepidoptera.  相似文献   

2.
The Tetraodontidae family are known to have relatively small and compact genomes compared to other vertebrates. The obscure puffer fish Takifugu obscurus is an anadromous species that migrates to freshwater from the sea for spawning. Thus the euryhaline characteristics of T. obscurus have been investigated to gain understanding of their survival ability, osmoregulation, and other homeostatic mechanisms in both freshwater and seawater. In this study, a high quality chromosome‐level reference genome for T. obscurus was constructed using long‐read Pacific Biosciences (PacBio) Sequel sequencing and a Hi‐C‐based chromatin contact map platform. The final genome assembly of T. obscurus is 381 Mb, with a contig N50 length of 3,296 kb and longest length of 10.7 Mb, from a total of 62 Gb of raw reads generated using single‐molecule real‐time sequencing technology from a PacBio Sequel platform. The PacBio data were further clustered into chromosome‐scale scaffolds using a Hi‐C approach, resulting in a 373 Mb genome assembly with a contig N50 length of 15.2 Mb and and longest length of 28 Mb. When we directly compared the 22 longest scaffolds of T. obscurus to the 22 chromosomes of the tiger puffer Takifugu rubripes, a clear one‐to‐one orthologous relationship was observed between the two species, supporting the chromosome‐level assembly of T. obscurus. This genome assembly can serve as a valuable genetic resource for exploring fugu‐specific compact genome characteristics, and will provide essential genomic information for understanding molecular adaptations to salinity fluctuations and the evolution of osmoregulatory mechanisms.  相似文献   

3.
Pine caterpillar moths, Dendrolimus spp. (Lepidoptera: Lasiocampidae), are serious economic pest of pines. Previously, phylogenetic analyses of Dendrolimus using different methods yielded inconsistent results. The chemosensory systems of insects may play fundamental roles in promoting speciation. Odorant‐binding proteins (OBPs) participate in the first step of odor detection. Studying the evolution of OBPs in closely related species may help us to identify their role in speciation. We identified three OBPs – one pheromone‐binding protein and two general odorant‐binding proteins – from male antennae of four Dendrolimus species, D. superans (Butler), D. punctatus (Walker), D. kikuchii Matsumura, and D. houi Lajonquiere, the olfactory recognition systems of which had not been previously investigated. We analyzed their molecular characteristics and compared their sequences to those of OBPs in D. tabulaeformis Tsai et Liu. Ka/Ks ratio analyses among the five Dendrolimus species indicate that PBP1 genes experienced more evolutionary pressure than the GOBPs. Phylogenetic relationships of PBP1 and GOBP1 both indicated that D. houi was the basal species, then branched D. kikuchii, while D. tabulaeformis, D. punctatus, and D. superans evolved more recently. These relationships are consistent with the changes in sex pheromone components of these five species. Dendrolimus tabulaeformis and D. punctatus are closely related sister species. However, the distances among GOBP2 sequences in the five Dendrolimus were very short, and the relationships of D. houi and D. kikuchii could not be resolved. Integrating our results with those of previous studies, we hypothesized that D. kikuchii, D. punctatus and D. superans evolved from the basal ancestor because of sex pheromone mutations and environmental pressure.  相似文献   

4.
Yellow perch, Perca flavescens, is an ecologically and economically important species native to a large portion of the northern United States and southern Canada and is also a promising candidate species for aquaculture. However, no yellow perch reference genome has been available to facilitate improvements in both fisheries and aquaculture management practices. By combining Oxford Nanopore Technologies long‐reads, 10X Genomics Illumina short linked reads and a chromosome contact map produced with Hi‐C, we generated a high‐continuity chromosome‐scale yellow perch genome assembly of 877.4 Mb. It contains, in agreement with the known diploid chromosome yellow perch count, 24 chromosome‐size scaffolds covering 98.8% of the complete assembly (N50 = 37.4 Mb, L50 = 11). We also provide a first characterization of the yellow perch sex determination locus that contains a male‐specific duplicate of the anti‐Mullerian hormone type II receptor gene (amhr2by) inserted at the proximal end of the Y chromosome (chromosome 9). Using this sex‐specific information, we developed a simple PCR genotyping assay which accurately differentiates XY genetic males (amhr2by+) from XX genetic females (amhr2by?). Our high‐quality genome assembly is an important genomic resource for future studies on yellow perch ecology, toxicology, fisheries and aquaculture research. In addition, characterization of the amhr2by gene as a candidate sex‐determining gene in yellow perch provides a new example of the recurrent implication of the transforming growth factor beta pathway in fish sex determination, and highlights gene duplication as an important genomic mechanism for the emergence of new master sex determination genes.  相似文献   

5.
6.
Bivalves, a highly diverse and the most evolutionarily successful class of invertebrates native to aquatic habitats, provide valuable molecular resources for understanding the evolutionary adaptation and aquatic ecology. Here, we reported a high‐quality chromosome‐level genome assembly of the razor clam Sinonovacula constricta using Pacific Bioscience single‐molecule real‐time sequencing, Illumina paired‐end sequencing, 10X Genomics linked‐reads and Hi‐C reads. The genome size was 1,220.85 Mb, containing scaffold N50 of 65.93 Mb and contig N50 of 976.94 Kb. A total of 899 complete (91.92%) and seven partial (0.72%) matches of the 978 metazoa Benchmarking Universal Single‐Copy Orthologs were determined in this genome assembly. And Hi‐C scaffolding of the genome resulted in 19 pseudochromosomes. A total of 28,594 protein‐coding genes were predicted in the S. constricta genome, of which 25,413 genes (88.88%) were functionally annotated. In addition, 39.79% of the assembled genome was composed of repetitive sequences, and 4,372 noncoding RNAs were identified. The enrichment analyses of the significantly expanded and contracted genes suggested an evolutionary adaptation of S. constricta to highly stressful living environments. In summary, the genomic resources generated in this work not only provide a valuable reference genome for investigating the molecular mechanisms of S. constricta biological functions and evolutionary adaptation, but also facilitate its genetic improvement and disease treatment. Meanwhile, the obtained genome greatly improves our understanding of the genetics of molluscs and their comparative evolution.  相似文献   

7.
The red‐spotted grouper Epinephelus akaara (E. akaara) is one of the most economically important marine fish in China, Japan and South‐East Asia and is a threatened species. The species is also considered a good model for studies of sex inversion, development, genetic diversity and immunity. Despite its importance, molecular resources for E. akaara remain limited and no reference genome has been published to date. In this study, we constructed a chromosome‐level reference genome of E. akaara by taking advantage of long‐read single‐molecule sequencing and de novo assembly by Oxford Nanopore Technology (ONT) and Hi‐C. A red‐spotted grouper genome of 1.135 Gb was assembled from a total of 106.29 Gb polished Nanopore sequence (GridION, ONT), equivalent to 96‐fold genome coverage. The assembled genome represents 96.8% completeness (BUSCO) with a contig N50 length of 5.25 Mb and a longest contig of 25.75 Mb. The contigs were clustered and ordered onto 24 pseudochromosomes covering approximately 95.55% of the genome assembly with Hi‐C data, with a scaffold N50 length of 46.03 Mb. The genome contained 43.02% repeat sequences and 5,480 noncoding RNAs. Furthermore, combined with several RNA‐seq data sets, 23,808 (99.5%) genes were functionally annotated from a total of 23,923 predicted protein‐coding sequences. The high‐quality chromosome‐level reference genome of E. akaara was assembled for the first time and will be a valuable resource for molecular breeding and functional genomics studies of red‐spotted grouper in the future.  相似文献   

8.
Onychostoma macrolepis is an emerging commercial cyprinid fish species. It is a model system for studies of sexual dimorphism and genome evolution. Here, we report the chromosome‐level assembly of the O.macrolepis genome obtained from the integration of nanopore long‐read sequencing with physical maps produced using Bionano and Hi‐C technology. A total of 87.9 Gb of nanopore sequence provided approximately 100‐fold coverage of the genome. The preliminary genome assembly was 883.2 Mb in size with a contig N50 size of 11.2 Mb. The 969 corrected contigs obtained from Bionano optical mapping were assembled into 853 scaffolds and produced an assembly of 886.5 Mb with a scaffold N50 of 16.5 Mb. Finally, using the Hi‐C data, 881.3 Mb (99.4% of genome) in 526 scaffolds were anchored and oriented in 25 chromosomes ranging in size from 25.27 to 56.49 Mb. In total, 24,770 protein‐coding genes were predicted in the genome, and ~96.85% of the genes were functionally annotated. The annotated assembly contains 93.3% complete genes from the BUSCO reference set. In addition, we identified 409 Mb (46.23% of the genome) of repetitive sequence, and 11,213 non‐coding RNAs, in the genome. Evolutionary analysis revealed that O. macrolepis diverged from common carp approximately 24.25 million years ago. The chromosomes of O. macrolepis showed an unambiguous correspondence to the chromosomes of zebrafish. The high‐quality genome assembled in this work provides a valuable genomic resource for further biological and evolutionary studies of O. macrolepis.  相似文献   

9.
Cicer arietinum L. (chickpea) is the third most important food legume crop. We have generated the draft sequence of a desi‐type chickpea genome using next‐generation sequencing platforms, bacterial artificial chromosome end sequences and a genetic map. The 520‐Mb assembly covers 70% of the predicted 740‐Mb genome length, and more than 80% of the gene space. Genome analysis predicts the presence of 27 571 genes and 210 Mb as repeat elements. The gene expression analysis performed using 274 million RNA‐Seq reads identified several tissue‐specific and stress‐responsive genes. Although segmental duplicated blocks are observed, the chickpea genome does not exhibit any indication of recent whole‐genome duplication. Nucleotide diversity analysis provides an assessment of a narrow genetic base within the chickpea cultivars. We have developed a resource for genetic markers by comparing the genome sequences of one wild and three cultivated chickpea genotypes. The draft genome sequence is expected to facilitate genetic enhancement and breeding to develop improved chickpea varieties.  相似文献   

10.
Bottle gourd (Lagenaria siceraria) is an important vegetable crop as well as a rootstock for other cucurbit crops. In this study, we report a high‐quality 313.4‐Mb genome sequence of a bottle gourd inbred line, USVL1VR‐Ls, with a scaffold N50 of 8.7 Mb and the longest of 19.0 Mb. About 98.3% of the assembled scaffolds are anchored to the 11 pseudomolecules. Our comparative genomic analysis identifies chromosome‐level syntenic relationships between bottle gourd and other cucurbits, as well as lineage‐specific gene family expansions in bottle gourd. We reconstructed the genome of the most recent common ancestor of Cucurbitaceae, which revealed that the ancestral Cucurbitaceae karyotypes consisted of 12 protochromosomes with 18 534 protogenes. The 12 protochromosomes are largely retained in the modern melon genome, while have undergone different degrees of shuffling events in other investigated cucurbit genomes. The 11 bottle gourd chromosomes derive from the ancestral Cucurbitaceae karyotypes followed by 19 chromosomal fissions and 20 fusions. The bottle gourd genome sequence has facilitated the mapping of a dominant monogenic locus, Prs, conferring Papaya ring‐spot virus (PRSV) resistance in bottle gourd, to a 317.8‐kb region on chromosome 1. We have developed a cleaved amplified polymorphic sequence (CAPS) marker tightly linked to the Prs locus and demonstrated its potential application in marker‐assisted selection of PRSV resistance in bottle gourd. This study provides insights into the paleohistory of Cucurbitaceae genome evolution, and the high‐quality genome sequence of bottle gourd provides a useful resource for plant comparative genomics studies and cucurbit improvement.  相似文献   

11.
Soybean cyst nematode (SCN, Heterodera glycines) is a major pest of soybean that is spreading across major soybean production regions worldwide. Increased SCN virulence has recently been observed in both the United States and China. However, no study has reported a genome assembly for H. glycines at the chromosome scale. Herein, the first chromosome‐level reference genome of X12, an unusual SCN race with high infection ability, is presented. Using whole‐genome shotgun (WGS) sequencing, Pacific Biosciences (PacBio) sequencing, Illumina paired‐end sequencing, 10X Genomics linked reads and high‐throughput chromatin conformation capture (Hi‐C) genome scaffolding techniques, a 141.01‐megabase (Mb) assembled genome was obtained with scaffold and contig N50 sizes of 16.27 Mb and 330.54 kilobases (kb), respectively. The assembly showed high integrity and quality, with over 90% of Illumina reads mapped to the genome. The assembly quality was evaluated using Core Eukaryotic Genes Mapping Approach and Benchmarking Universal Single‐Copy Orthologs. A total of 11,882 genes were predicted using de novo, homolog and RNAseq data generated from eggs, second‐stage juveniles (J2), third‐stage juveniles (J3) and fourth‐stage juveniles (J4) of X12, and 79.0% of homologous sequences were annotated in the genome. These high‐quality X12 genome data will provide valuable resources for research in a broad range of areas, including fundamental nematode biology, SCN–plant interactions and co‐evolution, and also contribute to the development of technology for overall SCN management.  相似文献   

12.
The greenhouse whitefly, Trialeurodes vaporariorum Westwood, is an agricultural pest of global importance. Here we report a 787‐Mb high‐quality draft genome sequence of T. vaporariorum assembled from PacBio long reads and Hi‐C chromatin interaction maps, which has scaffold and contig N50 lengths of 70 Mb and 500 kb, respectively, and contains 18,275 protein‐coding genes. About 98.8% of the assembled contigs were placed onto the 11 T. vaporariorum chromosomes. Comparative genomic analysis reveals significantly expanded gene families such as aspartyl proteases in T. vaporariorum compared to Bemisia tabaci Mediterranean (MED) and Middle East‐Asia Minor 1 (MEAM1). Furthermore, the cytochrome CYP6 subfamily shows significant expansion in T. vaporariorum and several genes in this subfamily display developmental stage‐specific expression patterns. The high‐quality T. vaporariorum genome provides a valuable resource for research in a broad range of areas such as fundamental molecular ecology, insect–plant/insect–microorganism or virus interactions and pest resistance management.  相似文献   

13.
Complete and highly accurate reference genomes and gene annotations are indispensable for basic biological research and trait improvement of woody tree species. In this study, we integrated single‐molecule sequencing and high‐throughput chromosome conformation capture techniques to produce a high‐quality and long‐range contiguity chromosome‐scale genome assembly of the soft‐seeded pomegranate cultivar ‘Tunisia’. The genome covers 320.31 Mb (scaffold N50 = 39.96 Mb; contig N50 = 4.49 Mb) and includes 33 594 protein‐coding genes. We also resequenced 26 pomegranate varieties that varied regarding seed hardness. Comparative genomic analyses revealed many genetic differences between soft‐ and hard‐seeded pomegranate varieties. A set of selective loci containing SUC8‐like, SUC6, FoxO and MAPK were identified by the selective sweep analysis between hard‐ and soft‐seeded populations. An exceptionally large selective region (26.2 Mb) was identified on chromosome 1. Our assembled pomegranate genome is more complete than other currently available genome assemblies. Our results indicate that genomic variations and selective genes may have contributed to the genetic divergence between soft‐ and hard‐seeded pomegranate varieties.  相似文献   

14.
15.
Davidia involucrata Baill, also known as the dove‐tree, is a living fossil and an endangered species currently restricted to the mountains of southwestern and central China. It has a beautiful and innovative trait of high horticultural value: two white bracts covering the flower caputila. Here, we report on the chromosome‐scale genome of this species using single‐molecule real‐time long reads and chromosome conformation capture (Hi‐C) techniques. This species has a larger genome size of 1,169 Mb and contains relatively more genes (42,554) than the closely related species Camptotheca acuminata (397 Mb and 31,825 genes). Both species shared one recent whole genome duplication before their divergence. The expansion of the repetitive elements after their divergence contributed greatly to the increase in the genome size of the dove‐tree. Photosynthesis‐related genes were almost absent or showed reduced expression in the bracts of the dove‐tree, while defence‐ and chemical‐related genes increased greatly, highlighting the important roles of the bracts in protecting flowers and attracting pollinators. The effective population size of the dove‐tree continuously decreased during the climate changes of the Quaternary. Such climate sensitivity should be fully considered in conservation efforts for this relict endangered species in the context of continuous climate warming in the future.  相似文献   

16.
17.
Woolly apple aphid (WAA, Eriosoma lanigerum Hausmann) (Hemiptera: Aphididae) is a major pest of apple trees (Malus domestica, order Rosales) and is critical to the economics of the apple industry in most parts of the world. Here, we generated a chromosome‐level genome assembly of WAA—representing the first genome sequence from the aphid subfamily Eriosomatinae—using a combination of 10X Genomics linked‐reads and in vivo Hi‐C data. The final genome assembly is 327 Mb, with 91% of the assembled sequences anchored into six chromosomes. The contig and scaffold N50 values are 158 kb and 71 Mb, respectively, and we predicted a total of 28,186 protein‐coding genes. The assembly is highly complete, including 97% of conserved arthropod single‐copy orthologues based on Benchmarking Universal Single‐Copy Orthologs (busco ) analysis. Phylogenomic analysis of WAA and nine previously published aphid genomes, spanning four aphid tribes and three subfamilies, reveals that the tribe Eriosomatini (represented by WAA) is recovered as a sister group to Aphidini + Macrosiphini (subfamily Aphidinae). We identified syntenic blocks of genes between our WAA assembly and the genomes of other aphid species and find that two WAA chromosomes (El5 and El6) map to the conserved Macrosiphini and Aphidini X chromosome. Our high‐quality WAA genome assembly and annotation provides a valuable resource for research in a broad range of areas such as comparative and population genomics, insect–plant interactions and pest resistance management.  相似文献   

18.
Apolygus lucorum (Miridae) is an omnivorous pest that occurs worldwide and is notorious for the serious damage it causes to various crops and substantial economic losses. Although some studies have examined the biological characteristics of the mirid bug, no reference genome is available in Miridae, limiting in‐depth studies of this pest. Here, we present a chromosome‐scale reference genome of A. lucorum, the first sequenced Miridae species. The assembled genome size was 1.02 Gb with a contig N50 of 785 kb. With Hi‐C scaffolding, 1,016 Mb contig sequences were clustered, ordered and assembled into 17 large scaffolds with scaffold N50 length 68 Mb, each corresponding to a natural chromosome. Numerous transposable elements occur in this genome and contribute to the large genome size. Expansions of genes associated with omnivorousness and mesophyll feeding such as those related to digestion, chemosensory perception, and detoxification were observed in A. lucorum, suggesting that gene expansion contributed to its strong environmental adaptability and severe harm to crops. We clarified that a salivary enzyme polygalacturonase is unique in mirid bugs and has significantly expanded in A. lucorum, which may contribute to leaf damage from this pest. The reference genome of A. lucorum not only facilitates biological studies of Hemiptera as well as an understanding of the damage mechanism of mesophyll feeding, but also provides a basis on which to develop efficient control technologies for mirid bugs.  相似文献   

19.
Genomes of varying sizes have been sequenced with next‐generation sequencing platforms. However, most reference sequences include draft unordered scaffolds containing chimeras caused by mis‐scaffolding. A BioNano genome (BNG) optical map was constructed to improve the previously sequenced flax genome (Linum usitatissimum L., 2n = 30, about 373 Mb), which consisted of 3852 scaffolds larger than 1 kb and totalling 300.6 Mb. The high‐resolution BNG map of cv. CDC Bethune totalled 317 Mb and consisted of 251 BNG contigs with an N50 of 2.15 Mb. A total of 622 scaffolds (286.6 Mb, 94.9%) aligned to 211 BNG contigs (298.6 Mb, 94.2%). Of those, 99 scaffolds, diagnosed to contain assembly errors, were refined into 225 new scaffolds. Using the newly refined scaffold sequences and the validated bacterial artificial chromosome‐based physical map of CDC Bethune, the 211 BNG contigs were scaffolded into 94 super‐BNG contigs (N50 of 6.64 Mb) that were further assigned to the 15 flax chromosomes using the genetic map. The pseudomolecules total about 316 Mb, with individual chromosomes of 15.6 to 29.4 Mb, and cover 97% of the annotated genes. Evidence from the chromosome‐scale pseudomolecules suggests that flax has undergone palaeopolyploidization and mesopolyploidization events, followed by rearrangements and deletions or fusion of chromosome arms from an ancient progenitor with a haploid chromosome number of eight.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号