首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16080篇
  免费   1562篇
  国内免费   796篇
  2024年   11篇
  2023年   294篇
  2022年   199篇
  2021年   614篇
  2020年   600篇
  2019年   570篇
  2018年   562篇
  2017年   529篇
  2016年   528篇
  2015年   673篇
  2014年   807篇
  2013年   917篇
  2012年   707篇
  2011年   615篇
  2010年   611篇
  2009年   781篇
  2008年   830篇
  2007年   870篇
  2006年   715篇
  2005年   676篇
  2004年   620篇
  2003年   623篇
  2002年   535篇
  2001年   443篇
  2000年   408篇
  1999年   370篇
  1998年   290篇
  1997年   281篇
  1996年   275篇
  1995年   231篇
  1994年   248篇
  1993年   247篇
  1992年   195篇
  1991年   170篇
  1990年   164篇
  1989年   160篇
  1988年   138篇
  1987年   123篇
  1986年   93篇
  1985年   114篇
  1984年   127篇
  1983年   71篇
  1982年   79篇
  1981年   89篇
  1980年   65篇
  1979年   49篇
  1978年   40篇
  1977年   42篇
  1976年   25篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
32.
Primate microbiome research is a quickly growing field with exciting potential for informing our understanding of primate biology, ecology, and evolution as well as host‐microbe interactions more broadly. This introductory essay to a special section of the American Journal of Primatology provides a cross‐sectional snapshot of current activity in these areas by briefly summarizing the diversity of contributed papers and their relationships to key themes in host‐associated microbiome research. It then uses this survey as a foundation for consolidating a set of key research questions to broadly guide future research. It also argues for the importance of methods standardization to facilitate comparative analyses and the identification of generalizable patterns and relationships. While primatology will benefit greatly from the integration of microbial datasets, it is uniquely positioned to address important questions regarding microbiology and macro‐ecology and evolution more generally. We are eager to see where the primate microbiome leads us.  相似文献   
33.
《Free radical research》2013,47(1):287-296
A full understanding of enzyme-substrate interactions requires a detailed knowledge of their structural basis at atomic resolution. Crystallographic and biochemical data have been analyzed with coupled computational and computer graphic approaches to characterize the molecular basis for recognition of the superoxide anion substrate by Cu. Zn superoxide dismutase (SOD). Detailed analysis of the bovine SOD structure aligned with SOD sequences from 15 species provides new results concerning the significance and molecular basis for sequence conservation. Specific roles have been assigned for all 23 invariant residues and additional residues exhibiting functional equivalence. Sequence invariance is dominated by 15 residues that form the active site stcreochemistry. supporting a primary biological function of superoxide dismutation. Using data from crystallographic structures and site-directed mutants, we are testing the role of individual residues in the active site channel, including (in human SOD) Glu132, Glu133, Lys136, Thr137, and Arg 143. Electrostatic calculations incorporating molecular flexibility suggest that the region of positive electrostatic potential in and over the active site channel above the Cu ion sweeps through space during molecular motion to enhance the facilitated diffusion responsible for the enzyme's rapid catalytic rate.  相似文献   
34.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   
35.
Melanopsins play a key role in non-visual photoreception in mammals. Their close phylogenetic relationship to the photopigments in invertebrate visual cells suggests they have evolved to acquire molecular characteristics that are more suited for their non-visual functions. Here we set out to identify such characteristics by comparing the molecular properties of mammalian melanopsin to those of invertebrate melanopsin and visual pigment. Our data show that the Schiff base linking the chromophore retinal to the protein is more susceptive to spontaneous cleavage in mammalian melanopsins. We also find this stability is highly diversified between mammalian species, being particularly unstable for human melanopsin. Through mutagenesis analyses, we find that this diversified stability is mainly due to parallel amino acid substitutions in extracellular regions. We propose that the different stability of the retinal attachment in melanopsins may contribute to functional tuning of non-visual photoreception in mammals.  相似文献   
36.
During their 120 to 165 million years of isolation, the flora and fauna of Madagascar evolved, to a large extent, independently of the African mainland.1 In contrast to other oceanic islands, Madagascar is large enough to house the major components of tropical ecosystems, allowing tests of evolutionary hypotheses on the level of complete communities. Taking lemurs, the primates of Madagascar, as an example, evolutionary hypotheses correctly predict the organization of their community structure with respect to ecological correlates. Lemur social systems and their morphological correlates, on the other hand, deviate in some respects from those of other primates. Apparently, lemur social systems are influenced by several selection pressures that are weak or rare in other primates. These include variable activity patterns and avoidance of infanticide. The interspecific variation in lemur social systems therefore offers a unique opportunity for a comprehensive study of the determinants of primate social systems.  相似文献   
37.
Although metamorphosis is widespread in the animal kingdom, several species have evolved life-cycle modifications to avoid complete metamorphosis. Some species, for example, many salamanders and newts, have deleted the adult stage via a process called paedomorphosis. Others, for example, some frog species and marine invertebrates, no longer have a distinct larval stage and reach maturation via direct development. Here we study which ecological conditions can lead to the loss of metamorphosis via the evolution of direct development. To do so, we use size-structured consumer-resource models in conjunction with the adaptive-dynamics approach. In case the larval habitat deteriorates, individuals will produce larger offspring and in concert accelerate metamorphosis. Although this leads to the evolutionary transition from metamorphosis to direct development when the adult habitat is highly favorable, the population will go extinct in case the adult habitat does not provide sufficient food to escape metamorphosis. With a phylogenetic approach we furthermore show that among amphibians the transition of metamorphosis to direct development is indeed, in line with model predictions, conditional on and preceded by the evolution of larger egg sizes.  相似文献   
38.
A food-producing role for cephalic exocrine glands has arisen independently in both taxa of highly eusocial bees, Apis and Meliponini. With several exceptions, there is little evidence that food is produced by glands of solitary bees or by most bees at lower levels of sociality. We suggest that this association with sociality is due to four adaptive features of these glands: (1) food from the glands allows feces from queens and larvae to have a small volume, (2) the queen's fecundity can be increased, (3) nutrient recovery via cannibalism can be facilitated, and (4) rearing of emergency replacement queens is accelerated. Acceleration of the rearing of other castes and of queens in the normal process of colony fission is not clearly an advantage ascribed to these glands. Trophic eggs produced by meliponine colony workers are analogous to the secretions from food-producing glands in Meliponini and Apis workers.  相似文献   
39.
It has long been assumed that serial homologues are ancestrally similar—polysomerism resulting from a “duplication” or “repetition” of forms—and then often diverge—anisomerism, for example, as they become adapted to perform different tasks as is the case with the forelimb and hind limbs of humans. However, such an assumption, with crucial implications for comparative, evolutionary, and developmental biology, and for evolutionary developmental biology, has in general not really been tested by a broad analysis of the available empirical data. Perhaps not surprisingly, more recent anatomical comparisons, as well as molecular knowledge of how, for example, serial appendicular structures are patterned along with different anteroposterior regions of the body axis of bilateral animals, and how “homologous” patterning domains do not necessarily mark “homologous” morphological domains, are putting in question this paradigm. In fact, apart from showing that many so-called “serial homologues” might not be similar at all, recent works have shown that in at least some cases some “serial” structures are indeed more similar to each other in derived taxa than in phylogenetically more ancestral ones, as pointed out by authors such as Owen. In this article, we are taking a step back to question whether such assumptions are actually correct at all, in the first place. In particular, we review other cases of so-called “serial homologues” such as insect wings, arthropod walking appendages, Dipteran thoracic bristles, and the vertebrae, ribs, teeth, myomeres, feathers, and hairs of chordate animals. We show that: (a) there are almost never cases of true ancestral similarity; (b) in evolution, such structures—for example, vertebra—and/or their subparts—for example, “transverse processes”—many times display trends toward less similarity while in many others display trends toward more similarity, that is, one cannot say that there is a clear, overall trend to anisomerism.  相似文献   
40.
Whole cells of Chlorella vulgaris and Clostridium butyricum were co-immobilized in 2% agar gel. NADP was suitable as an electron carrier. The rate of hydrogen evolution increased with increasing NADP concentration. The optimum conditions for hydrogen evolution were pH 7.0 and 37°C. The immobilized C. vulgaris-NADP-immobilized Cl. butyricum system continuously evolved hydrogen at a rate of 0.29–1.34 μmol/h per mg Chl for 6 days. On the other hand, the system without NADP evolved only a trace amount of hydrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号