首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   11篇
  国内免费   6篇
  2023年   3篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   8篇
  2018年   10篇
  2017年   8篇
  2016年   3篇
  2015年   3篇
  2014年   9篇
  2013年   17篇
  2012年   7篇
  2011年   9篇
  2010年   4篇
  2009年   8篇
  2008年   7篇
  2007年   13篇
  2006年   12篇
  2005年   9篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   6篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有207条查询结果,搜索用时 265 毫秒
81.
Cardiolipin (CL) has been shown to play a crucial role in regulating the function of proteins in the inner mitochondrial membrane. As the most abundant protein of the inner mitochondrial membrane, the ADP/ATP carrier (AAC) has long been the model of choice to study CL-protein interactions, and specifically bound CLs have been identified in a variety of crystal structures of AAC. However, how CL binding affects the structural dynamics of AAC in atomic detail remains largely elusive. Here we compared all-atom molecular dynamics simulations on bovine AAC1 in lipid bilayers with and without CLs. Our results show that on the current microsecond simulation time scale: 1) CL binding does not significantly affect overall stability of the carrier or structural symmetry at the matrix-gate level; 2) pocket volumes of the carrier and interactions involved in the matrix-gate network become more heterogeneous in parallel simulations with membranes containing CLs; 3) CL binding consistently strengthens backbone hydrogen bonds within helix H2 near the matrix side; and 4) CLs play a consistent stabilizing role on the domain 1-2 interface through binding with the R30:R71:R151 stacking structure and fixing the M2 loop in a defined conformation. CL is necessary for the formation of this stacking structure, and this structure in turn forms a very stable CL binding site. Such a delicate equilibrium suggests the strictly conserved R30:R71:R151stacking structure of AACs could function as a switch under regulation of CLs. Taken together, these results shed new light on the CL-mediated modulation of AAC function.  相似文献   
82.
Summary The substrate and inhibitor specificity of the lactic acid (Lac) transport system of human neutrophils was investigated. The ability of a variety of compounds to inhibit the influx of [14C]lactate, presumably reflecting competition by substrate analogues for binding at the external translocation site, was taken as an index of affinity for the Lac carrier. pH-stat techniques were utilized to assess transportability. Results indicate a relatively low order of selectivity, the neutrophil H+ + lactate cotransport system demonstrating a broad acceptance of short-chain unsubstituted and substituted alkyl monocarboxylates as well as aromatic monocarboxylates. There was a slight preference for oxo, Cl, and OH substituents over other groups at the two-position of short chain alkyl fatty acids: all were readily transported across the plasma membrane at rates approaching that ofl-lactate itself. Aromatic acids were not transported inward by the carrier although these compounds did permeate via simple nonionic diffusion. The neutrophil Lac carrier can be blocked by a number of cyanocinnamate derivatives, the classical inhibitors of monocarboxylate transport in mitochondria, and by dithiol compounds and sulfhydryl-reactive agents. This constellation of biochemical properties is similar to the features that characterize other well described H+ + lactate cotransport systems in red blood cells, Ehrlich ascites tumor cells, hepatocytes, and cardiac sarcolemmal vesicles, although significant differences exist when comparisons are made to the Na+-dependent lactate transporter of the kidney proximal tubule.  相似文献   
83.
In the peptide SPOT array technique, an array of different peptides are synthesized on, and covalently linked to, cellulose membranes. In one usage of this technique, these peptides are screened in an overlay assay to determine which short sequence(s) contains a binding site for an interacting protein. By preparing overlapping peptides that cover the entire sequence of a protein, all of the binding domains on the protein for a second protein can be identified. We have utilized the peptide SPOT array technique to identify the short amino acid sequences within nuclear pore complex proteins (also known as nucleoporins or Nups) that bind the nuclear carrier importin-beta. Crystallization studies by others have indicated that nuclear carriers such as importin-beta bind to phenylalanine-glycine (FG) repeats present in numerous copies in the sequences of a family of nucleoporins. Consistent with this, we found that most (but not all) of the Nup binding sites for importin-beta identified by this technique contain Fx, FG, FxFG, FxFx, or GLFG sequences, although not all such sequences bound importin-beta. Peptide SPOT array substitution studies confirmed a crucial role for the phenylalanine in FG repeats and identified a lysine residue flanking some repeats that is crucial for importin-beta binding to those repeats. In addition to these expected binding sequences for importin-beta, we found multiple instances of a peptide lacking a canonical FG repeat that strongly bound importin-beta, indicating that additional Nup sequences may form binding sites for importin-beta.  相似文献   
84.
The particular compositions of the intracellular membrane organelles rely on the proteins and lipids received frequently through membrane trafficking. The delivery of these molecules is driven by the membrane-bound organelles known as transport carriers (TCs). Advanced microscopy approaches have revealed that TC morphology ranges from small vesicles to complex tubular membrane structures. These tubular TCs (TTCs) support effectively both sorting and transport events within the biosynthetic and endocytic pathways, while a coherent picture of the processes that define the formation and further fate of TTCs is still missing. Here, we present an overview of the mechanisms operating during the TTC life cycle, as well as of the emerging role of tubular carriers in different intracellular transport routes.  相似文献   
85.
自制载体冷冻小鼠原核期胚胎效果分析   总被引:1,自引:1,他引:0  
目的探讨自制冷冻载体冷冻保存昆明小鼠体内原核期胚胎的可行性。方法首先,比较了两种流行的商业化载体:开放式拉长麦管(open pulled straw,OPS)和冷冻帽(cryotop)开展小鼠原核胚玻璃化冷冻保存效果。其次,以cryotop为对照,利用自制简易载体(cryotip)开展小鼠原核期胚胎的玻璃化冷冻保存。之后,利用ANOVA对各组胚胎在复苏后的体外培养卵裂率、囊胚率进行统计分析。结果 OPS和cryotop两组之间,胚胎在玻璃化冷冻/复苏后发育的2-细胞率、4-细胞率和囊胚率差异均无显著性(P0.05),但cryotop冷冻效果更接近对照组;cryotip玻璃化冷冻载体与cryotop相比,胚胎复苏后各组差异均无显著性(P0.05),数值上除了2-细胞发育率外,cryotip其他几项结果都稍微高于cryotop组。结论 OPS,cryotop,cryotip冷冻保存昆明小鼠体内原核期胚胎均是可行的;cryotop在冷冻效果上要优于OPS,笔者自制的cryotip因其成本低,制作简单,操作安全可靠,在实验中替代昂贵的商业化载体OPS和cryotop是可行的。  相似文献   
86.
Membrane transport proteins, also known as transporters, control the movement of ions, nutrients, metabolites, and waste products across the membranes of a cell and are central to its biology. Proteins of this type also serve as drug targets and are key players in the phenomenon of drug resistance. The malaria parasite has a relatively reduced transportome, with only approximately 2.5% of its genes encoding transporters. Even so, assigning functions and physiological roles to these proteins, and ascertaining their contributions to drug action and drug resistance, has been very challenging. This review presents a detailed critique and synthesis of the disruption phenotypes, protein subcellular localisations, protein functions (observed or predicted), and links to antimalarial drug resistance for each of the parasite's transporter genes. The breadth and depth of the gene disruption data are particularly impressive, with at least one phenotype determined in the parasite's asexual blood stage for each transporter gene, and multiple phenotypes available for 76% of the genes. Analysis of the curated data set revealed there to be relatively little redundancy in the Plasmodium transportome; almost two‐thirds of the parasite's transporter genes are essential or required for normal growth in the asexual blood stage of the parasite, and this proportion increased to 78% when the disruption phenotypes available for the other parasite life stages were included in the analysis. These observations, together with the finding that 22% of the transportome is implicated in the parasite's resistance to existing antimalarials and/or drugs within the development pipeline, indicate that transporters are likely to serve, or are already serving, as drug targets. Integration of the different biological and bioinformatic data sets also enabled the selection of candidates for transport processes known to be essential for parasite survival, but for which the underlying proteins have thus far remained undiscovered. These include potential transporters of pantothenate, isoleucine, or isopentenyl diphosphate, as well as putative anion‐selective channels that may serve as the pore component of the parasite's ‘new permeation pathways’. Other novel insights into the parasite's biology included the identification of transporters for the potential development of antimalarial treatments, transmission‐blocking drugs, prophylactics, and genetically attenuated vaccines. The syntheses presented herein set a foundation for elucidating the functions and physiological roles of key members of the Plasmodium transportome and, ultimately, to explore and realise their potential as therapeutic targets.  相似文献   
87.

Aim

The main objective of the current investigation was to develop nanostructured lipid carriers (NLC) based gel for the enhancement of transdermal absorption of meloxicam (MLX) to achieve local as well as systemic drug action without concurrent gastrointestinal toxicity.

Main methods

NLC gel containing MLX was prepared and characterized for particle size, polydispersity, zeta potential, pH, rheology, entrapment efficiency, occlusion factor, and thermal behavior. In vitro drug release, in vitro skin permeation and deposition studies were carried out using Franz diffusion cells. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) of MLX-NLC gel treated stratum corneum (SC) were undertaken to get an insight into the skin permeation enhancement mechanism of MLX-NLC gel. Toxicity potential of the developed gel formulation was assessed by in vitro hemolysis and histopathological examinations. The rat paw edema test was performed to evaluate the anti-inflammatory activity of MLX-NLC gel.

Key findings

MLX-NLC gel demonstrated sustained release and enhanced the skin permeation and deposition of meloxicam especially into the dermis in comparison to meloxicam gel (control). MLX-NLC had an impact on the barrier properties of the skin and acted via protein and lipid modifications in the stratum corneum. MLX-NLC gel turned out to be hemocompatible, non-irritant, and non toxic with significant anti-inflammatory activity.

Significance

The results suggest that NLC gel could be a promising carrier for the transdermal delivery of meloxicam.  相似文献   
88.
The complex formation of Co(II) with N-donor ligands in dimethylsulfoxide (DMSO) is investigated by means of calorimetric and spectroscopic methods. The ligands considered in this work are tripodal polyamines and polypyridines: 2,2′,2′′-triaminotriethylamine (TREN), tris(2-(methylamino)ethyl)amine (Me3TREN), tris(2-(dimethylamino)ethyl)amine (Me6TREN), tris[(2-pyridyl)methyl]amine (TPA) and 6,6′-bis-[bis-(2-pyridylmethyl)aminomethyl]-2,2′-bipyridine (BTPA).These ligands are characterized by a systematic modification of the donor groups in order to study how their structure is related to the stability of the complexes formed and to their ability to bind oxygen. A comparison with thermodynamic data for similar Cd(II) systems as well as with data referred to linear tetra-amines in DMSO is also made. The solvent effect on the nature and stability of the species formed is discussed. DFT calculations are carried out to explain the trend in thermodynamic parameters for Me6TREN. Only Co(TREN)2+ is able to bind oxygen and two successive species (μ-superoxo and μ-peroxo) are formed. The kinetics of oxygen uptake by Co(TREN)2+ is found to be less solvent-dependent than other Co(II)-polyamine complexes when the formation of the mononuclear μ-superoxo complex is considered.  相似文献   
89.
In grassland ecosystems, spatial and temporal variability in precipitation is a key driver of species distributions and population dynamics. We experimentally manipulated precipitation to understand the physiological basis for differences in responses of species to water availability in a southern mixed grass prairie. We focused on the performance of two dominant C4 grasses, Andropogon gerardii Vitman and Schizachyrium scoparium (Michx.) Nash, in treatments that received ambient rainfall, half of ambient rainfall (“drought” treatment), or approximately double ambient rainfall (“irrigated” treatment). Water potentials of S. scoparium were lower than A. gerardii, suggesting superior ability to adjust to water deficit in S. scoparium. Additionally, drought reduced photosynthesis to a greater extent in A. gerardii compared to S. scoparium. Leaf-level photosynthesis rates were similar in ambient and irrigated treatments, but were significantly lower in the drought treatment. Although stomatal conductance was reduced by drought, this was not limiting for photosynthesis. Leaf δ13C values were decreased by drought, caused by an increase in Ci/Ca. Chlorophyll fluorescence measures indicated light-harvesting rates were highest in irrigated treatments, and were lower in ambient and drought treatments. Moreover, drought resulted in a greater proportion of absorbed photon energy being lost via thermal pathways. Reductions in photosynthesis came as a result of non-stomatal limitations in the C4 cycle. Our results provide mechanistic support for the hypothesis that S. scoparium is more drought tolerant than A. gerardii.  相似文献   
90.
siRNA能高效且特异地阻断内源性同源基因的表达即RNA干涉(RNAi).RNAi在临床中的应用需要开发安全有效的输送系统,脂质纳米输送载体是一种具有发展潜力的siRNA输送系统.siRNA-脂质复合物的形成主要通过静电相互作用,静电作用必须足够强以至于载体在运输过程中不释放siRNA,而载体到达治疗部位时,解聚释放出siRNA.载体的粒径应小于100 nm,以利于细胞的摄取和透过特定部位的血管开窗.为了减少网状内皮系统(RES)的摄取和延长载体的循环时间,载体的表面由聚乙二醇修饰.本文主要综述了构建siRNA输送载体的基本要求.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号