首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2561篇
  免费   251篇
  国内免费   143篇
  2024年   5篇
  2023年   75篇
  2022年   72篇
  2021年   210篇
  2020年   201篇
  2019年   307篇
  2018年   176篇
  2017年   92篇
  2016年   101篇
  2015年   135篇
  2014年   161篇
  2013年   276篇
  2012年   107篇
  2011年   118篇
  2010年   59篇
  2009年   100篇
  2008年   90篇
  2007年   78篇
  2006年   64篇
  2005年   51篇
  2004年   39篇
  2003年   55篇
  2002年   52篇
  2001年   37篇
  2000年   20篇
  1999年   30篇
  1998年   37篇
  1997年   30篇
  1996年   29篇
  1995年   18篇
  1994年   17篇
  1993年   18篇
  1992年   23篇
  1991年   14篇
  1990年   11篇
  1989年   7篇
  1988年   5篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1984年   7篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
排序方式: 共有2955条查询结果,搜索用时 20 毫秒
51.
MicroRNAs (miRNAs) have been found to play a key role in drug resistance. In the current study, we aimed to explore the potential role of miR‐126 in trastuzumab resistance in breast cancer cells. We found that the trastuzumab‐resistant cell lines SKBR3/TR and BT474/TR had low expression of miR‐126 and increased ability to migrate and invade. The resistance, invasion and mobilization abilities of the cells resistant to trastuzumab were reduced by ectopic expression of miR‐126 mimics. In comparison, inhibition of miR‐126 in SKBR3 parental cells had the opposite effect of an increased resistance to trastuzumab as well as invasion and migration. It was also found that miR‐126 directly targets PIK3R2 in breast cancer cells. PIK3R2‐knockdown cells showed decreased resistance to trastuzumab, while overexpression of PIK3R2 increased trastuzumab resistance. In addition, our finding showed that overexpression of miR‐126 reduced resistance to trastuzumab in the trastuzumab‐resistant cells and that inhibition of the PIK3R2/PI3K/AKT/mTOR signalling pathway was involved in this effect. SKBR3/TR cells also showed increased sensitivity to trastuzumab mediated by miR‐126 in vivo. In conclusion, the above findings demonstrated that overexpression of miR‐126 or down‐regulation of its target gene may be a potential approach to overcome trastuzumab resistance in breast cancer cells.  相似文献   
52.
Breast Cancer (BCa) is the most often diagnosed cancer among women who were in the late 1940’s. Breast cancer growth is largely dependent on the expression of estrogen and progesterone receptor. Breast cancer cells may have one, both, or none of these receptors. The treatment for breast cancer may involve surgery, hormonal therapy (Tamoxifen, an aromatase inhibitor, etc.) and oral chemotherapeutic drugs. The molecular docking technique reported the findings on the potential binding modes of the 2‐(2‐bromo‐3‐nitrophenyl)‐5‐phenyl‐1,3,4‐oxadiazole derivatives with the estrogen receptor (PDB ID: 3ERT). The 1,3,4‐oxadiazole derivatives 4a – 4j have been synthesized and described by spectroscopic method. 2‐(2‐Bromo‐6‐nitrophenyl)‐5‐(4‐bromophenyl)‐1,3,4‐oxadiazole ( 4c ) was reconfirmed by single‐crystal XRD. All the compounds have been tested in combination with generic Imatinib pharmaceutical drug against breast cancer cell lines isolated from Caucasian woman MCF‐7, MDA‐MB‐453 and MCF‐10A non‐cancer cell lines. The compounds with the methoxy (in 4c ) and methyl (in 4j ) substitution were shown to have significant cytotoxicity, with 4c showing dose‐dependent activation and decreased cell viability. The mechanism of action was reported by induced apoptosis and tested by a DNA enzyme inhibitor experiment (ELISA) for Methyl Transferase. Molecular dynamics simulations were made for hit molecule 4c to study the stability and interaction of the protein?ligand complex. The toxicity properties of ADME were calculated for all the compounds. All these results provide essential information for further clinical trials.  相似文献   
53.
Cardamonin (CD), a naturally occurring chalcone isolated from large black cardamom, was previously reported to suppress the proliferation of breast cancer cells. However, its precise molecular anti‐tumor mechanisms have not been well elucidated. In this study, we found that CD markedly inhibited the proliferation of MDA‐MB 231 and MCF‐7 breast cancer cells through the induction of G2/M arrest and apoptosis. Reactive oxygen species (ROS) plays a pivotal role in the inhibition of CD‐induced cell proliferation. Treatment with N‐acetyl‐cysteine (NAC), an ROS scavenger, blocked CD‐induced G2/M arrest and apoptosis in this study. Quenching of ROS by overexpression of catalase also blocked CD‐induced cell cycle arrest and apoptosis. We showed that CD enhanced the expression and nuclear translocation of Forkhead box O3 (FOXO3a) via upstream c‐Jun N‐terminal kinase, inducing the expression of FOXO3a and its target genes, including p21, p27, and Bim. This process led to the reduction of cyclin D1 and enhancement of activated caspase‐3 expression. The addition of NAC markedly reversed these effects, knockdown of FOXO3a using small interfering RNA also decreased CD‐induced G2/M arrest and apoptosis. In vivo, CD efficiently suppressed the growth of MDA‐MB 231 breast cancer xenograft tumors. Taken together, our data provide a molecular mechanistic rationale for CD‐induced cell cycle arrest and apoptosis in breast cancer cells.  相似文献   
54.
This study identifies the main changes in protein expression in human breast tumors compared to normal breast tissue. Malignant tumors (32) and normal breast tissue samples (23), from formaldehyde‐fixed, paraffin‐embedded specimens are subjected to discovery proteomics using liquid chromatography/tandem mass spectrometry, with spectral counts for quantitation. The dataset contains 1406 proteins. Differential expression is measured using a method that takes advantage of estimates of the percentage of tumor on a slide. This analysis shows that the major classes of proteins over‐expressed by tumors are RNA‐binding, heat shock and DNA repair proteins. RNA‐binding proteins, including heterogeneous nuclear ribonucleoproteins (HNRNPs), SR splice factors (SRSF) and elongation factors form the largest group. Comparison with results from another study demonstrates that the RNA‐binding proteins are associated specifically with malignant transformation, rather than with cell proliferation. HNRNP and SRSF proteins help define splice sites in normal cells. Their over‐expression may dysregulate splicing, which in turn has the potential to promote malignant transformation.  相似文献   
55.
56.
A series of O-substituted analogues of the B,C-ring truncated scaffold of deguelin were designed as C-terminal inhibitors of heat shock protein 90 (HSP90) and investigated as novel antiproliferative agents against HER2-positive breast cancer. Among the synthesized compounds, compound 80 exhibited significant inhibition in both trastuzumab-sensitive and trastuzumab-resistant breast cancer cells, whereas compound 80 did not show any cytotoxicity in normal cells. Compound 80 markedly downregulated the expression of the major client proteins of HSP90 in both cell types, indicating that the cytotoxicity of 80 in breast cancer cells is attributed to the destabilization and inactivation of HSP90 client proteins and that HSP90 inhibition represents a promising strategy to overcome trastuzumab resistance. A molecular docking study of 80 with the homology model of a HSP90 homodimer showed that 80 fit nicely in the C-terminal domain with a higher electrostatic complementary score than that of ATP.  相似文献   
57.
数以万亿计的微生物生活在人类肠道中,形成了一个复杂的微生态群落。肠道微生物可为宿主提供营养和能量,并与人类疾病的发生发展密切相关。随着研究的不断深入,越来越多的证据表明肠道微生物的改变可引起性激素水平变化,进而导致一系列相关的疾病发生。本文就肠道微生物与多囊卵巢综合征、乳腺癌、卵巢癌等性激素相关疾病之间的关系进行阐述,旨在为人类疾病诊疗提供新思路。  相似文献   
58.
Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a key role in maintaining cellular metabolism. AMP or adenosine diphosphate (ADP) levels rise during metabolic stress, such as during nutrient starvation, hypoxia and muscle contraction, and bind to AMPK to induce activity. Recently, activation of AMPK has been considered an attractive therapeutic strategy in the field of human oncology. Structural optimization of lead compound 2, a new type of AMPK activator with potent AMPK activation activity and attractive selective growth inhibition against human cancer cells, improved aqueous solubility, metabolic stability and animal pharmacokinetics (PK) and culminated in the identification of (5-{1-[(6-methoxypyridin-3-yl)methyl]piperidin-4-yl}-1H-benzimidazol-2-yl)(4-{[4-(trifluoromethyl)phenyl]methyl}piperazin-1-yl)methanone ditosylate, ASP4132 (28). Studies on ASP4132 had advanced to clinical trials for the treatment of cancer.  相似文献   
59.
Triple negative breast cancer (TNBC) is a more common type of breast cancer with high distant metastasis and poor prognosis. The potential role of lamins in cancer progression has been widely revealed. However, the function of lamin B2 (LMNB2) in TNBC progression is still unclear. The present study aimed to investigate the role of LMNB2 in TNBC. The cancer genome atlas (TCGA) database analysis and immunohistochemistry (IHC) were performed to examine LMNB2 expression levels. LMNB2 short hairpin RNA plasmid or lentivirus was used to deplete the expression of LMNB2 in human TNBC cell lines including MDA-MB-468 and MDA-MB-231. Alterations in cell proliferation and apoptosis in vitro and the nude mouse tumorigenicity assay in vivo were subsequently analyzed. The human TNBC tissues shown high expression of LMNB2 according to the bioinformation analysis and IHC assays. LMNB2 expression was correlated with the clinical pathological features of TNBC patients, including pTNM stage and lymph node metastasis. Through in vitro and in vivo assays, we confirmed LMNB2 depletion suppressed the proliferation and induced the apoptosis of TNBC cells, and inhibited tumor growth of TNBC cells in mice, with the decrease in Ki67 expression or the increase in caspase-3 expression. In conclusion, LMNB2 may promote TNBC progression and could serve as a potential therapeutic target for TNBC treatment.  相似文献   
60.
Background: Triple-negative breast cancer (TNBC) is a refractory subtype of breast cancer, 25–30% of which have dysregulation in the PI3K/AKT pathway. The present study investigated the anticancer effect of erianin on TNBC cell line and its underlying mechanism.Methods: After treatment with erianin, MTT assay was employed to determine the MDA-MB-231 and EFM-192A cell proliferation, the nucleus morphological changes were observed by DAPI staining. The cell cycle and apoptotic proportion were detected by flow cytometry. Western blot was performed to determine the cell cycle and apoptosis-related protein expression and PI3K pathways. Finally, the antiproliferative activity of erianin was further confirmed by adding or not adding PI3K agonists SC79.Results: Erianin inhibited the proliferation of MDA-MB-231 and EFM-192A cells in a dose-dependent manner, the IC50 were 70.96 and 78.58 nM, respectively. Erianin could cause cell cycle arrest at the G2/M phase, and the expressions of p21 and p27 were up-regulated, while the expressions of CDK1 and Cyclin B1 were down-regulated. Erianin also induced apoptosis via the mitochondrial pathway, with the up-regulation of the expression of Cyto C, PARP, Bax, active form of Caspase-3, and Caspase-9. Furthermore, p-PI3K and p-Akt expression were down-regulated by erianin. After co-incubation with SC79, the cell inhibition rate of erianin was decreased, which further confirmed that the attenuated PI3K/Akt pathway was relevant to the pro-apoptotic effect of erianin.Conclusions: Erianin can inhibit the proliferation of TNBC cells and induce cell cycle arrest and apoptosis, which may ascribe to the abolish the activation of the PI3K/Akt pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号