首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of deguelin, a series of the B,C-ring truncated surrogates with N-substituted amide linkers were investigated as HSP90 inhibitors. The structure activity relationship of the template was studied by incorporating various substitutions on the nitrogen of the amide linker and examining their HIF-1α inhibition. Among them, compound 57 showed potent HIF-1α inhibition and cytotoxicity in triple-negative breast cancer lines in a dose-dependent manner. Compound 57 downregulated expression and phosphorylation of major client proteins of HSP90 including AKT, ERK and STAT3, indicating that its antitumor activity was derived from the inhibition of HSP90 function. The molecular modeling of 57 demonstrated that 57 bound well to the C-terminal ATP-binding pocket in the open conformation of the hHSP90 homodimer with hydrogen bonding and pi-cation interactions. Overall, compound 57 is a potential antitumor agent for triple-negative breast cancer as a HSP90 C-terminal inhibitor.  相似文献   

2.
A new 2-thioquinazolinones series was designed and synthesized as HSP90 inhibitors based on the structure of hit compound VII obtained by virtual screening approach. Their in vitro anti-proliferative activity was evaluated against three human cancer cell lines rich in HSP90 namely; colorectal carcinoma (HCT-116), and cervical carcinoma (Hela), breast carcinoma (MCF-7). Compounds 5a, 5d, 5e and 9h showed a significant broad spectrum anti-proliferative activity against all tested cell lines. They were characterized by potent effect against breast cancer in particular with IC50 of 11.73, 8.56, 7.35 and 9.48 μM, respectively against Doxorubicin (IC50 4.17 μM). HSP90 ATPase activity inhibition assay were conducted where compound 5d exhibited the best IC50 with 1.58 μM compared to Tanespimycin (IC50 = 2.17 μM). Compounds 5a and 9h showed higher IC50 values of 3.21 and 3.41 μM, respectively. The effects of 5a, 5d and 9h on Her2 (a client proteins of HSP90) and HSP70 were evaluated in MCF-7 cells. All tested compounds were found to reduce Her2 protein expression levels and induce Hsp70 protein expression levels significantly, emphasizing that antibreast cancer effect is a consequence of HSP90 chaperone inhibition. Cell cycle analysis of MCF-7 cells treated with 5d showed cell cycle arrest at G2/M phase 38.89% and pro-apoptotic activity as indicated by annexin V-FITC staining by 22.42%. Molecular docking studies suggested mode of interaction to HSP90 via hydrogen bonding. ADME properties prediction of the active compounds suggested that they could be used as orally absorbed anticancer drug candidates.  相似文献   

3.
Based on the lead compound L-80 (compound 2), a potent heat shock protein 90 (HSP90) inhibitor, a series of C-ring truncated deguelin analogs were designed, synthesized and evaluated for Hypoxia Inducible Factor-1α (HIF-1α) inhibition as a primary screening method. Their structure–activity relationship was investigated in a systematic manner by varying the A/B ring, linker and D/E ring, respectively. Among the synthesized inhibitors, compound 5 exhibited potent HIF-1α inhibition in a dose-dependent manner and significant antitumor activity in human non-small cell lung carcinoma (H1299), with better activities than L-80. It also inhibited in vitro hypoxia-mediated angiogenic processes in human retinal microvascular endothelial cells (HRMEC). The docking study of 5 showed a similar binding mode as L-80: it occupied the C-terminal ATP-binding pocket of HSP90, indicating that the anticancer and antiangiogenic activities of 5 were derived from HIF-1α destabilization by inhibiting the C-terminal ATP-binding site of hHSP90.  相似文献   

4.
The study is focused on the design and synthesis of amide tethered quinoline-resorcinol hybrid constructs as a new class of HSP90 inhibitor. In-vitro studies of the synthetic compounds led to the identification of compound 11, which possesses potent cell growth inhibitory effects against HCT116, Hep3B and PC-3 cell lines, exerted through HSP90 inhibition. Compound 11 triggers degradation of HSP90 client proteins along with concomitant induction of HSP70, demonstrates apoptosis inducing ability and causes G2M phase cell cycle arrest in PC-3 cells. Molecular modeling was used to dock compound 11 into the HSP90 active site and key interactions with the amino acid residues of the HSP90 chaperone protein were determined.  相似文献   

5.
6.
Cancer cells rely on heat shock proteins (HSPs) for growth and survival. Especially HSP90 has multiple client proteins and plays a critical role in malignant transformation, and therefore different types of HSP90 inhibitors are being developed. The bioactive natural compound gambogic acid (GB) is a prenylated xanthone with antitumor activity, and it has been proposed to function as an HSP90 inhibitor. However, there are contradicting reports whether GB induces a heat shock response (HSR), which is cytoprotective for cancer cells and therefore a potentially problematic feature for an anticancer drug. In this study, we show that GB and a structurally related compound, called gambogenic acid (GBA), induce a robust HSR, in a thiol-dependent manner. Using heat shock factor 1 (HSF1) or HSF2 knockout cells, we show that the GB or GBA-induced HSR is HSF1-dependent. Intriguingly, using closed form ATP-bound HSP90 mutants that can be co-precipitated with HSF1, a known facilitator of cancer, we show that also endogenous HSF2 co-precipitates with HSP90. GB and GBA treatment disrupt the interaction between HSP90 and HSF1 and HSP90 and HSF2. Our study implies that these compounds should be used cautiously if developed for cancer therapies, since GB and its derivative GBA are strong inducers of the HSR, in multiple cell types, by involving the dissociation of a HSP90-HSF1/HSF2 complex.  相似文献   

7.
The molecular chaperone heat shock protein 90 (HSP90) works in concert with co-chaperones to stabilize its client proteins, which include multiple drivers of oncogenesis and malignant progression. Pharmacologic inhibitors of HSP90 have been observed to exert a wide range of effects on the proteome, including depletion of client proteins, induction of heat shock proteins, dissociation of co-chaperones from HSP90, disruption of client protein signaling networks, and recruitment of the protein ubiquitylation and degradation machinery—suggesting widespread remodeling of cellular protein complexes. However, proteomics studies to date have focused on inhibitor-induced changes in total protein levels, often overlooking protein complex alterations. Here, we use size-exclusion chromatography in combination with mass spectrometry (SEC-MS) to characterize the early changes in native protein complexes following treatment with the HSP90 inhibitor tanespimycin (17-AAG) for 8 h in the HT29 colon adenocarcinoma cell line. After confirming the signature cellular response to HSP90 inhibition (e.g., induction of heat shock proteins, decreased total levels of client proteins), we were surprised to find only modest perturbations to the global distribution of protein elution profiles in inhibitor-treated HT29 cells at this relatively early time-point. Similarly, co-chaperones that co-eluted with HSP90 displayed no clear difference between control and treated conditions. However, two distinct analysis strategies identified multiple inhibitor-induced changes, including known and unknown components of the HSP90-dependent proteome. We validate two of these—the actin-binding protein Anillin and the mitochondrial isocitrate dehydrogenase 3 complex—as novel HSP90 inhibitor-modulated proteins. We present this dataset as a resource for the HSP90, proteostasis, and cancer communities (https://www.bioinformatics.babraham.ac.uk/shiny/HSP90/SEC-MS/), laying the groundwork for future mechanistic and therapeutic studies related to HSP90 pharmacology. Data are available via ProteomeXchange with identifier PXD033459.  相似文献   

8.
Heat shock protein 90 (HSP90) inhibitors are potential drugs for cancer therapy. The inhibition of HSP90 on cancer cell growth largely through degrading client proteins, like Akt and p53, therefore, triggering cancer cell apoptosis. Here, we show that the HSP90 inhibitor 17-AAG can induce the expression of GRP75, a member of heat shock protein 70 (HSP70) family, which, in turn, attenuates the anti-growth effect of HSP90 inhibition on cancer cells. Additionally, 17-AAG enhanced binding of GRP75 and p53, resulting in the retention of p53 in the cytoplasm. Blocking GRP75 with its inhibitor MKT-077 potentiated the anti-tumor effects of 17-AAG by disrupting the formation of GRP75-p53 complexes, thereby facilitating translocation of p53 into the nuclei and leading to the induction of apoptosis-related genes. Finally, dual inhibition of HSP90 and GRP75 was found to significantly inhibit tumor growth in a liver cancer xenograft model. In conclusion, the GRP75 inhibitor MKT-077 enhances 17-AAG-induced apoptosis in HCCs and increases p53-mediated inhibition of tumor growth in vivo. Dual targeting of GRP75 and HSP90 may be a useful strategy for the treatment of HCCs.  相似文献   

9.
10.
Polycystic liver disease (PLD) occurs in 75–90% of patients affected by autosomal dominant polycystic kidney disease (ADPKD), which affects 1∶400–1,000 adults and arises from inherited mutations in the PKD1 or PKD2 genes. PLD can lead to bile duct obstructions, infected or bleeding cysts, and hepatomegaly, which can diminish quality of life. At present, no effective, approved therapy exists for ADPKD or PLD. We recently showed that inhibition of the molecular chaperone heat shock protein 90 (HSP90) with a small molecule inhibitor, STA-2842, induced the degradation of multiple HSP90-dependent client proteins that contribute to ADPKD pathogenesis and slowed the progression of renal cystogenesis in mice with conditional deletion of Pkd1. Here, we analyzed the effects of STA-2842 on liver size and cystic burden in Pkd-/- mice with established PLD. Using magnetic resonance imaging over time, we demonstrate that ten weeks of STA-2842 treatment significantly reduced both liver mass and cystic index suggesting selective elimination of cystic tissue. Pre-treatment cystic epithelia contain abundant HSP90; the degree of reduction in cysts was accompanied by inhibition of proliferation-associated signaling proteins EGFR and others, and induced cleavage of caspase 8 and PARP1, and correlated with degree of HSP90 inhibition and with inactivation of ERK1/2. Our results suggest that HSP90 inhibition is worth further evaluation as a therapeutic approach for patients with PLD.  相似文献   

11.
12.
13.
Heat-shock protein 90 (HSP90) is a molecular chaperone that activates oncogenic transformation in several solid tumors, including lung and breast cancers. Ganetespib, a most promising candidate among several HSP90 inhibitors under clinical trials, has entered Phase III clinical trials for cancer therapy. Despite numerous evidences validating HSP90 as a target of anticancer, there are few studies on PET agents targeting oncogenic HSP90. In this study, we synthesized and biologically evaluated a novel 18F-labeled 5-resorcinolic triazolone derivative (1, [18F]PTP-Ganetespib) based on ganetespib. [18F]PTP-Ganetespib was labeled by click chemistry of Ganetespib-PEG-Alkyne (10) and [18F]PEG-N3 (11) with 37.3?±?5.11% of radiochemical yield and 99.7?±?0.09% of radiochemical purity. [18F]PTP-Ganetespib showed proper LogP (0.96?±?0.06) and good stability in human serum over 97% for 2?h. [18F]PTP-Ganetespib showed high uptakes in breast cancer cells containing triple negative breast cancer (TNBC) MDA-MB-231 and Her2-negative MCF-7 cells, which are target breast cancer cell lines of HSP90 inhibitor, ganetespib, as an anticancer. Blocking of HSP90 by the pretreatment of ganetespib exhibited significantly decreased accumulation of [18F]PTP-Ganetespib in MDA-MB-231 and MCF-7 cells, indicating the specific binding of [18F]PTP-Ganetespib to MDA-MB-231 and MCF-7 cells with high HSP90 expression. In the biodistribution and microPET imaging studies, the initial uptake into tumor was weaker than in other thoracic and abdominal organs, but [18F]PTP-Ganetespib was retained relatively longer in the tumor than other organs. The uptake of [18F]PTP-Ganetespib in tumors was not sufficient for further development as a tumor-specific PET imaging agent by itself, but this preliminary PET imaging study of [18F]PTP-Ganetespib can be basis for developing new PET imaging agents based on HSP90 inhibitor, ganetespib.  相似文献   

14.
Vibsanin A is the first natural product isolated from Viburnum awabuki and has several biological activities. We have reported that a vibsanin A analog, obtained from process of total synthesis of vibsanin A, has anti-proliferative activity against human cancer cell lines. In this study, we evaluated anti-proliferative effect of the vibsanin A analogs against various human cancer cell lines and examined molecular target of the analog in human cells. Among the vibsanin A analogs, vibsanin A analog C (VAC) showed anti-proliferative effect against various cancer cell lines, and the anti-proliferative activity was strongest among the vibsanin A analogs. Additionally, VAC fluctuated amounts of HSP90-related proteins in cells and inhibited HSP90-mediated protein refolding of luciferase in vitro. These results suggest that the anti-proliferative activity of VAC is due to HSP90 inhibition, and VAC has a potential as novel anti-cancer drug as HSP90 inhibitor.  相似文献   

15.
16.
A new series of 1,2,4-triazole-linked urea and thiourea conjugates have been synthesized and evaluated for their in vitro cytotoxicity against selected human cancer cell lines namely, breast (MCF-7, MDA-MB-231), lung (A549) prostate (DU145) and one mouse melanoma (B16-F10) cell line and compared with reference drug. The compound 5t showed significant cytotoxicity on MCF-7 breast cancer cell line with a IC50 value of 7.22?±?0.47?µM among all the tested compounds. Notably, induction of apoptosis by compound 5t on MCF-7 cells was evaluated using different staining techniques such as acridine orange/ethidium bromide (AO/EB), annexin V-FITC/PI, and DAPI. Further, clonogenic assay indicates the inhibition of colony formation on MCF-7 cells by compound 5t. Moreover, the flow-cytometric analysis also revealed that compound 5t caused the arrest of cells at G0/G1 phase of cell cycle. In addition, the compounds when tested on normal human cells (L-132) were found to be safer with low cytotoxicity profile.  相似文献   

17.
HSP90, a major molecular chaperone, plays an essential role in the maintenance of several signaling molecules. Inhibition of HSP90 by inhibitors such as 17-allylamino-demethoxy-geldanamycin (17AAG) is known to induce apoptosis in various cancer cells by decreasing the activation or expression of pro-survival molecules such as protein kinase B (Akt). While we did not observe either decrease in expression or activation of pro-survival signaling molecules in human breast cancer cells upon inhibiting HSP90 with 17AAG, we did observe a decrease in cell motility of transformed cells, and cell motility and invasion of cancer cells. We found a significant decrease in the number of filopodia and lamellipodia, and in the F-actin bundles upon HSP90 inhibition. Our results show no change in the active forms or total levels of FAK and Pax, or in the activation of Rac-1 and Cdc-42; however increased levels of HSP90, HSP90α and HSP70 were observed upon HSP90 inhibition. Co-immuno-precipitation of HSP90 reveals interaction of HSP90 with G-actin, which increases upon HSP90 inhibition. FRET results show a significant decrease in interaction between actin monomers, leading to decreased actin polymerization upon HSP90 inhibition. We observed a decrease in the invasion of human breast cancer cells in the matrigel assay upon HSP90 inhibition. Over-expression of αB-crystallin, known to be involved in actin dynamics, did not abrogate the effect of HSP90 inhibition. Our work provides the molecular mechanism by which HSP90 inhibition delays cell migration and should be useful in developing cancer treatment strategies with known anti-cancer drugs such as cisplatin in combination with HSP90 inhibitors.  相似文献   

18.
Recent studies have shown that novobiocin (NB), a member of the coumermycin (CA) family of antibiotics with demonstrated DNA gyrase inhibitory activity, inhibits Heat shock protein 90 (HSP90) by binding weakly to a putative ATP-binding site within its C-terminus. To develop more potent HSP90 inhibitors that target this site and to define structure–activity relationships (SARs) for this class of compounds, we have synthesized twenty seven 3-amido-7-noviosylcoumarin analogues starting from NB and CA. These were evaluated for evidence of HSP90 inhibition using several biological assays including inhibition of cell proliferation and cell cycle arrest, induction of the heat shock response, inhibition of luciferase-refolding in vitro, and depletion of the HSP90 client protein c-erbB-2/HER-2/neu (HER2). This SAR study revealed that a substantial increase in biological activity can be achieved by introduction of an indole-2-carboxamide group in place of 4-hydroxy-isopentylbenzamido group at C-3 of NB in addition to removal/derivatization of the 4-hydroxyl group from the coumarin ring. Methylation of the 4-hydroxyl group in the coumarin moiety moderately increased biological activity as shown by compounds 11 and 13. Our most potent new analogue 19 demonstrated biological activities consistent with known HSP90-binding agents, but with greater potency than NB.  相似文献   

19.
Heat shock protein 90 (HSP90) is a conserved molecular chaperone that functions as part of complexes in which different client proteins target it to diverse sets of substrates. In this paper, HSP90 complexes were investigated in γ-proteobacteria from mild (Shewanella oneidensis) and cold environments (Shewanella frigidimarina and Psychrobacter frigidicola), to determine changes in HSP90 interactions with client proteins in response to the adaptation to cold environments. HSP90 participation in cold adaptation was determined using the specific inhibitor 17-allylamino-geldanamycin. Then, HSP90 was immunoprecipitated from bacterial cultures, and the proteins in HSP90 complexes were analyzed by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. According to HSP90-associated protein analysis, only 15 common proteins were found in both species from the same genus, S. oneidensis and S. frigidimarina, whereas a significant higher number of common proteins were found in both psychrophilic species S. frigidimarina and P. frigidicola 21 (p < 0.001). Only two HSP90-interacting proteins, the chaperone proteins DnaK and GroEL, were common to the three species. Interestingly, some proteins related to energy metabolism (isocitrate lyase, succinyl-CoA synthetase, alcohol dehydrogenase, NAD(+) synthase, and malate dehydrogenase) and some translation factors only interacted with HSP90 in psychrophilic bacteria. We can conclude that HSP90 and HSP90-associated proteins might take part in the mechanism of adaptation to cold environments, and interestingly, organisms living in similar environments conserve similar potential HSP90 interactors in opposition to phylogenetically closely related organisms of the same genus but from different environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号