首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   27篇
  国内免费   7篇
  2024年   2篇
  2023年   5篇
  2022年   3篇
  2021年   13篇
  2020年   13篇
  2019年   13篇
  2018年   9篇
  2017年   6篇
  2016年   7篇
  2015年   16篇
  2014年   12篇
  2013年   19篇
  2012年   7篇
  2011年   8篇
  2010年   5篇
  2009年   11篇
  2008年   7篇
  2007年   5篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1993年   1篇
  1987年   4篇
  1980年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
21.
The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.  相似文献   
22.
基于PC声卡的生物医学电信号采集方法   总被引:1,自引:0,他引:1  
把生物医学电信号以线性调幅的方法调制在音频载波信号之上,用PC声卡采集该已调波信号,用软件实现调幅波的解调,经数字低通滤波器的滤波,恢复出生物医学电信号,达到采集和显示生物医学电信号的的目的。实践证明,该方法具有成本低、多通道工作实时性好的特点,具有实用价值。  相似文献   
23.
The availability of purified and active protein is the starting point for the majority of in vitro biomedical, biochemical, and drug discovery experiments. The use of polyhistidine affinity tags has resulted in great increases of the efficiency of the protein purification process, but can negatively affect structure and/or activity measurements. Similarly, buffer molecules may perturb the conformational stability of a protein or its activity. During the determination of the structure of a Gcn5-related N-acetyltransferase (GNAT) from Pseudomonas aeruginosa (PA4794), we found that both HEPES and the polyhistidine affinity tag bind (separately) in the substrate-binding site. In the case of HEPES, the molecule induces conformational changes in the active site, but does not significantly affect enzyme activity. In contrast, the uncleaved His-tag does not induce major conformational changes but acts as a weak competitive inhibitor of peptide substrate. In two other GNAT enzymes, we observed that the presence of the His-tag had a strong influence on the activity of these proteins. The influence of protein preparation on functional studies may affect the reproducibility of experiments in other laboratories, even when changes between protocols seem at first glance to be insignificant. Moreover, the results presented here show how critical it is to adjust the experimental conditions for each protein or family of proteins, and investigate the influence of these factors on protein activity and structure, as they may significantly alter the effectiveness of functional characterization and screening methods. Thus, we show that a polyhistidine tag and the buffer molecule HEPES bind in the substrate-binding site and influence the conformation of the active site and the activity of GNAT acetyltransferases. We believe that such discrepancies can influence the reproducibility of some experiments and therefore could have a significant “ripple effect” on subsequent studies.  相似文献   
24.
25.
Emission spectroscopy of laser-induced plasma was applied to elemental analysis of biological samples. Laser-induced breakdown spectroscopy (LIBS) performed on thin sections of rodent tissues: kidneys and tumor, allows the detection of inorganic elements such as (i) Na, Ca, Cu, Mg, P, and Fe, naturally present in the body and (ii) Si and Gd, detected after the injection of gadolinium-based nanoparticles. The animals were euthanized 1 to 24 hr after intravenous injection of particles. A two-dimensional scan of the sample, performed using a motorized micrometric 3D-stage, allowed the infrared laser beam exploring the surface with a lateral resolution less than 100 μm. Quantitative chemical images of Gd element inside the organ were obtained with sub-mM sensitivity. LIBS offers a simple and robust method to study the distribution of inorganic materials without any specific labeling. Moreover, the compatibility of the setup with standard optical microscopy emphasizes its potential to provide multiple images of the same biological tissue with different types of response: elemental, molecular, or cellular.  相似文献   
26.
Full‐field functional optical hemocytometer (FFOH), based on the absorption intensity fluctuation modulation (AIFM) effect, is in vivo label‐free image method for capillaries of near‐transparent live biological specimens. FFOH can provide a flow video, flow velocity measurement and RBC count, simultaneously. The zebrafish experimental result shows the potential to study the physiological mechanisms of the blood circulation systems. Further details can be found in the article by Fuli Zhang et al. ( e201700039 )

  相似文献   

27.
We present an in vivo lab‐free full‐field functional optical hemocytometer (FFOH) for application to the capillaries of a live biological specimen, based on the absorption intensity fluctuation modulation (AIFM) effect. Because of the absorption difference between the red blood cells (RBCs) and background tissue under low‐coherence light illumination, an endogenous instantaneous intensity fluctuation is generated by the AIFM effect when RBCs discontinuously traverse the capillary. The AIFM effect is used to highlight the RBC signal relative to the background tissue by computing the real‐time modulation depth. FFOH can simultaneously provide a flow video, the flow velocity and the RBC count. Ourexperimental results can potentially be applied to study the physiological mechanisms of the blood circulation systems of near‐transparent live biological samples.   相似文献   
28.
For more than a quarter of a century, sequencing technologies from Sanger’s method to next-generation high-throughput techniques have provided fascinating opportunities in the life sciences. The continuing upward trajectory of sequencing technologies will improve livestock research and expedite the development of various new genomic and technological studies with farm animals. The use of high-throughput technologies in livestock research has increased interest in metagenomics, epigenetics, genome-wide association studies, and identification of single nucleotide polymorphisms and copy number variations. Such studies are beginning to provide revolutionary insights into biological and evolutionary processes. Farm animals, such as cattle, swine, and horses, have played a dual role as economically and agriculturally important animals as well as biomedical research models. The first part of this study explores the current state of sequencing methods, many of which are already used in animal genomic studies, and the second part summarizes the state of cattle, swine, horse, and chicken genome sequencing and illustrates its achievements during the last few years. Finally, we describe several high-throughput sequencing approaches for the improved detection of known, unknown, and emerging infectious agents, leading to better diagnosis of infectious diseases. The insights from viral metagenomics and the advancement of next-generation sequencing will strongly support specific and efficient vaccine development and provide strategies for controlling infectious disease transmission among animal populations and/or between animals and humans. However, prospective sequencing technologies will require further research and in-field testing before reaching the marketplace.  相似文献   
29.
高光谱成像技术是传统成像与光谱技术相结合的一门新技术,其可同时获得被测物体的空间特征与光谱信息,以实现对物质特性的研究。本文介绍了高光谱成像技术的基本原理、系统的基本构成及特点,总结和阐述了近年来高光谱成像技术在生物医学领域的发展,以及其在疾病诊断中的应用。  相似文献   
30.
The mining of the massive amounts of biomedical information is hindered by the still scarce representation of these data using formal vocabularies and ontologies, which is necessary for cross-linking conceptual entities between different resources and, in general, representing the information in a computer-tractable way. Basic things such as retrieving a comprehensive list of associations between complex diseases and their reported symptoms or underlying biological processes, given in terms of formal identifiers, are not trivial and, in many cases, these have to be generated by manual curation or inferred/predicted from indirect evidences. In this work, using a text-mining approach based on detecting significant co-mentions in the scientific literature, we generated a resource with millions of relationships between thousands of terms representing diseases, symptoms, biological processes, molecular functions and cellular compartments, all given in terms of formal identifiers of these terms in the main resources dealing with them. We show some examples that highlight the differences between these relationships and those that are available in other resources. These relationships can be queried and inspected in an interactive web interface freely available at: https://sysbiol.cnb.csic.es/CoMent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号