首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   14篇
  国内免费   68篇
  2024年   1篇
  2023年   7篇
  2022年   9篇
  2021年   7篇
  2020年   14篇
  2019年   30篇
  2018年   19篇
  2017年   20篇
  2016年   11篇
  2015年   21篇
  2014年   18篇
  2013年   51篇
  2012年   17篇
  2011年   14篇
  2010年   14篇
  2009年   23篇
  2008年   18篇
  2007年   23篇
  2006年   14篇
  2005年   35篇
  2004年   26篇
  2003年   21篇
  2002年   17篇
  2001年   12篇
  2000年   5篇
  1999年   6篇
  1998年   9篇
  1997年   3篇
  1996年   3篇
  1995年   8篇
  1994年   3篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1982年   3篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
排序方式: 共有505条查询结果,搜索用时 15 毫秒
401.
ABSTRACT Using a compartmentalized treatment technique, the role of arbuscular mycorrhizal fungi (AMF; Acaulospora scrobiculata) on arsenic (As) uptake and translocation in Brachiaria decumbens. Treatments consisted of a factorial arrangement of three As doses (0, 50, and 100 mg kg?1) and the presence/absence of AMF inoculates. In the absence of AMF, B. decumbens did not show As accumulation, indicating the probable presence of tolerance mechanism via As exclusion by the roots. B. decumbens plants showed high AMF colonization levels, especially in the arsenic treatments, with AMF improving shoot and root growth independent of As concentrations. Arsenic accumulation occurred only with AMF inoculation. Phosphorous uptake was reduced in B. decumbens roots in the presence of arsenic with and without inoculation of AMF. Results suggest that B. decumbens can be used in phytoremediation procedures when inoculated with A. scrobiculata, although pasture formation should be strictly avoided in contaminated sites.  相似文献   
402.
Hydroponic experiments were conducted to investigate the effect of arsenic on seedlings of Wrightia arborea and Holoptelea integrifolia. Results revealed that W. arborea could tolerate much higher arsenic concentration than H. integrifolia. Therefore, further investigations were focused on W. arborea using higher arsenic concentrations (0.2–2.0 mM). Seedlings of W. arborea accumulated about 312–2147 and 1048–5688 mg/kg dry weight of arsenic in shoots and roots, respectively, following treatments with 0.2–1.5 mM of arsenic without exhibiting arsenic toxicity signs. However, arsenic at 2.0 mM caused decline in growth. Macronutrients content such as Ca, S (except at 2.0 mM), and K (only in root) increased while Mg, P, and K (shoot) decreased by arsenic treatments. However, the content of micronutrients was enhanced under arsenic treatments. Non-protein thiols (NP-SH) showed positive correlations with arsenic doses up to 0.2–1.5 mM but at 2.0 mM there was a decline in NP-SH thus suggesting important role of NP-SH in imparting arsenic tolerance. This study demonstrated that W. arborea that could tolerate arsenic concentrations up to 0.2–1.5 mM may be useful in arsenic phytoremediation programs.  相似文献   
403.
The arsH gene or its homologs are a frequent part of the arsenic resistance system in bacteria and eukaryotes. Although a specific biological function of the gene product is unknown, the ArsH protein was annotated as a member of the NADPH-dependent FMN reductase family based on a conserved (T/S)XRXXSX(T/S) fingerprint motif common for FMN binding proteins. Presented here are the first crystal structure of an ArsH protein from Shigella flexneri refined at 1.7 A resolution and results of enzymatic activity assays that revealed a strong NADPH-dependent FMN reductase and low azoreductase activities. The ArsH apo protein has an alpha/beta/alpha-fold typical for FMN binding proteins. The asymmetric unit consists of four monomers, which form a tetramer. Buried surface analysis suggests that this tetramer is likely to be the relevant biological assembly. Dynamic light scattering experiments are consistent with this hypothesis and show that ArsH in solution at room temperature does exist predominantly in the tetrameric form.  相似文献   
404.
砷对烤烟(Nicotiana tabacum L.)碳代谢的影响   总被引:2,自引:0,他引:2  
采用盆栽试验,系统地研究了砷对烤烟全生育期碳代谢及其过程的影响,结果表明,砷降低了烤烟整个生育期的叶绿素含量、光合速率、蔗糖合成酶(SS,合成方向)活性和现蕾以后的蔗糖磷酸合成酶(SPS)活性,提高了全生育期的SS(分解方向)活性和可溶性糖含量,因而抑制了碳的同化和蔗糖的合成,促进了蔗糖的分解,不利于碳向积累方向转化。砷提高了全生育期的腺苷二磷酸葡萄糖焦磷酸化酶(ADPG-PPase)活性,增加了团棵期和现蕾期淀粉的积累,降低了团棵期和采收期的可溶性淀粉酶(SSS)活性和采收期的淀粉含量,从而导致了碳积累代谢的紊乱,最终造成碳积累的减少。  相似文献   
405.
Greenhouse experiments were conducted to study the effects of chelating agents on the growth and metal accumulation of Chinese brake fern (Pteris vittata L.), vetiver (Vetiveria zizanioides L.), and rostrate sesbania (Sesbania rostrata L.) in soil contaminated with arsenic (As), Cu, Pb, and Zn. Among the five chelating agents used [ethylenediaminetriacetic acid (EDTA), hydroxyethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), oxalic acid (OA), and phytic acid (PA)], OA was the best to mobilize As, EDTA to mobilize Cu and Pb, and HEDTA to mobilize Zn from soil, respectively. The biomass of vetiver was the highest, followed by rostrate sesbania. All chelating agents inhibited the growth of Chinese brake fern and rostrate sesbania, but HEDTA significantly increased the aboveground biomass of vetiver. Dry weights of both Chinese brake fern and rostrate sesbania decreased with increasing EDTA concentrations amended in the soil, especially in treatments with high EDTA concentrations. EDTA and HEDTA enhanced Cu, Zn, and Pb, but lowered As accumulation in all three plant species, except for As in vetiver, while OA significantly enhanced As accumulation in the aboveground part of vetiver. Concentrations of Cu, Zn, and Pb in the aboveground parts of plants increased significantly with the increase of EDTA concentrations and treatment time. In addition to As, Chinese brake fern also accumulated the highest Cu, Pb, and Zn in its aboveground parts among the three plant species grown in metal-contaminated soil with EDTA/HEDTA treatments. This species, therefore, can be used to simultaneously clean up As, Cu, Pb, and Zn from contaminated soils with the aid of EDTA or HEDTA.  相似文献   
406.
The potential of Leersia oryzoides (rice-cut grass) to remediate arsenic-contaminated soil was studied in greenhouse pot experiments. Leersia oryzoides grown in soil amended with arsenic to a concentration of 110 mg kg(-1), extracted up to 305 mg kg(-1) and 272 mg kg(-1) arsenic into its shoots and roots, respectively, giving a shoot:root quotient of 1.12 and phytoextraction coefficients up to 2.8. Plants in the arsenic-amended soil showed visible signs of stress in the first 8 wk of growth, but then recovered. Based on the 132 plants that were grown in a surface area of approximately 180 cm2, the calculated total arsenic taken up by shoots is 120, 130, and 130 g ha(-1) at 6, 10, and 16 wk, respectively, suggesting that additional arsenic could be removed by periodic mowing over a growing season. Extraction with a mixture of nitric acid and hydrogen peroxide indicated that the available arsenic was constant after the first 6 wk. Uptake is comparable to that reported for duckweed (Lemna gibba L.) and overlaps the low end of the values reported for Chinese brake fern (Pteris Vittata L.)  相似文献   
407.
Certain plant species have been shown to vigorously accumulate some metals from soil, and thus represent promising and effective remediation alternatives. In order to select the optimum forms of nitrogen (N) fertilizers for the arsenic (As) hyperaccumulator, Pteris vittata L., to maximize As extraction, five forms of N were added individually to different treatments to study the effect of N forms on As uptake of the plants under soil culture in a greenhouse. Although shoot As concentration tended to decrease and As translocation from root to shoot was inhibited, overall As accumulation was greater due to higher biomass when N fertilizer was added. Arsenic accumulation in plants with N fertilization was 100-300% more than in the plants without N fertilization. There were obvious differences in plant biomass and As accumulation among the N forms, i.e., NH4HCO3, (NH4)2S04, Ca(NO3)2, KNO3, urea. The total As accumulation in the plants grown in As-supplied soil, under different forms of N fertilizer, decreased as NH4HCO3>(NH4)2S04 > urea > Ca(NO3)2 >KNO3>CK. The plants treated with N and As accumulated up to 5.3-7.97 mg As/pot and removed 3.7-5.5% As from the soils, compared to approximately 2.3% of As removal in the control. NH4+ -N was apparently more effective than other N fertilizers in stimulating As removal when soil was supplied with As at initiation. No significant differences in available As were found among different forms of N fertilizer after phytoremediation. It is concluded that NH4+ -N was the preferable fertilizer for P. vittata to maximize As removal.  相似文献   
408.
The potential risk of arsenic-related neurodegeneration has been a growing concern. Arsenic exposure has been reported to disrupt neurite growth and neuron body integrity in vitro; however, its underlying mechanism remains unclear. Previously, we showed that arsenic sulfide (AS) exerted cytotoxicity in gastric and colon cancer cells through regulating nuclear factor of the activated T cells (NFAT) pathway. The NFAT pathway regulates axon path finding and neural development. Using neural crest cell line PC12 cells as a model, here we show that AS caused mitochondrial membrane potential collapse, reactive oxygen species production, and cytochrome c release, leading to mitochondria-mediated apoptosis via the AKT/GSK-3β/NFAT pathway. Increased glycogen synthase kinase-3 beta (GSK-3β) activation leads to the inactivation of NFAT and its antiapoptotic effects. Through inhibiting GSK-3β activity, both nerve growth factor (NGF) and Tideglusib, a GSK-3β inhibitor partially rescued the PC12 cells from the AS-induced cytotoxicity and restored the expression of NFATc3. In addition, overexpression of NFATc3 stimulated neurite outgrowth and potentiated the effect of NGF on promoting the neurite outgrowth. Collectively, our results show that NFATc3 serves as the downstream target of NGF and plays a key role in preventing AS-induced neurotoxicity through regulating the AKT/GSK-3β/NFAT pathway in PC12 cells.  相似文献   
409.
410.
植物源食物是人类摄入有毒金属元素镉(Cd)和砷(As)的主要途径。深化植物对Cd和As积累途径分子机制的认识,有助于培育可食部分中低有毒金属元素含量的作物新种质。该文基于近年来有关植物Cd和As积累在主要模式植物中所取得的实质性研究进展,对植物介导Cd和As吸收的转运蛋白、As形态和生物转化机制以及控制Cd和As根-地上部转运效率和分配的关键因子等方面的研究进展进行综述,并对未来的研究前景进行了展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号