首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7456篇
  免费   709篇
  国内免费   292篇
  2024年   18篇
  2023年   196篇
  2022年   188篇
  2021年   445篇
  2020年   434篇
  2019年   672篇
  2018年   489篇
  2017年   266篇
  2016年   285篇
  2015年   458篇
  2014年   579篇
  2013年   684篇
  2012年   392篇
  2011年   471篇
  2010年   323篇
  2009年   388篇
  2008年   354篇
  2007年   332篇
  2006年   309篇
  2005年   261篇
  2004年   221篇
  2003年   190篇
  2002年   155篇
  2001年   88篇
  2000年   73篇
  1999年   52篇
  1998年   47篇
  1997年   26篇
  1996年   25篇
  1995年   12篇
  1994年   5篇
  1993年   8篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有8457条查询结果,搜索用时 312 毫秒
81.
82.
83.
84.
Tissue homeostasis is controlled by the differentiated progeny of residential progenitors (stem cells). Adult stem cells constantly adjust their proliferation/differentiation rates to respond to tissue damage and stresses. However, how differentiated cells maintain tissue homeostasis remains unclear. Here, we find that heparan sulfate (HS), a class of glycosaminoglycan (GAG) chains, protects differentiated cells from loss to maintain intestinal homeostasis. HS depletion in enterocytes (ECs) leads to intestinal homeostasis disruption, with accumulation of intestinal stem cell (ISC)‐like cells and mis‐differentiated progeny. HS‐deficient ECs are prone to cell death/stress and induced cytokine and epidermal growth factor (EGF) expression, which, in turn, promote ISC proliferation and differentiation. Interestingly, HS depletion in ECs results in the inactivation of decapentaplegic (Dpp) signaling. Moreover, ectopic Dpp signaling completely rescued the defects caused by HS depletion. Together, our data demonstrate that HS is required for Dpp signal activation in ECs, thereby protecting ECs from ablation to maintain midgut homeostasis. Our data shed light into the regulatory mechanisms of how differentiated cells contribute to tissue homeostasis maintenance.  相似文献   
85.
86.
The application of tyrosine kinase inhibitors (TKIs) to the epidermal growth factor receptor (EGFR) has been proven to be highly effective for non‐small‐cell lung cancer (NSCLC). However, patients often evolve into acquired resistance. The secondary mutations in EGFR account for nearly half of the acquired resistance. While the remaining 50% of patients exhibit tolerance to EGFR‐TKIs with unclear mechanism(s). Cylindromatosis (CYLD), a deubiquitinase, functions as a tumor suppressor to regulate cell apoptosis, proliferation, and immune response, and so on. The role of CYLD in NSCLC EGFR‐TKI resistance remains elusive. Here, we found CYLD was upregulated in PC‐9 cells, whereas downregulated in PC‐9 acquired gefitinib‐resistant (PC‐9/GR) cells in response to the treatment of gefitinib, which is consistent with the results in the Gene Expression Omnibus database. Overexpression of CYLD promoted a more apoptotic death ratio in PC‐9/GR cells than that in PC‐9 cells. In addition, silencing the expression of CYLD resulted in an increase of the expression level of interleukin‐6, transforming growth factor‐β and tumor necrosis factor‐α, which may contribute to acquired resistance of PC‐9 cells to gefitinib. Taken together, our data in vitro demonstrate that PC‐9/GR cells downregulated CYLD expression, enhanced subsequent CYLD‐dependent antiapoptotic capacity and inflammatory response, which may provide a possible target for acquired gefitinib‐resistant treatment in NSCLC.  相似文献   
87.
Primary melanocytes isolated from skin and expanded in culture have been widely used for laboratory research and clinical applications. The conventional method to isolate primary melanocytes from skin usually requires about 3–4 weeks of culture for melanocytes to grow sufficiently to passage. Considering that melanocytes comprise only 3%–7% of epidermal cells in normal human skin, it would be extremely helpful to increase the isolation efficiency and shorten the initial culture time to quickly meet various application needs. Here, we report that adding Y‐27632, a Rho kinase inhibitor, into the initial culture medium for 2 days can dramatically increase the yield of melanocytes. We found that Y‐27632 can promote keratinocyte attachment and survival in the melanocyte culture system, resulting in not only better recovery, but also increased proliferation of melanocytes by a paracrine signaling pathway. More specifically, Y‐27632 significantly induced keratinocyte expression of stem cell factor, which played an important role in enhancing the growth of melanocytes. In summary, Y‐27632 could profoundly enhance the yield of primary melanocytes in the initial culture through paracrine effects on keratinocytes.  相似文献   
88.
Fetuses exposed to an inflammatory environment are predisposed to long‐term adverse neurological outcomes. However, the mechanism by which intrauterine inflammation (IUI) is responsible for abnormal fetal brain development is not fully understood. The mechanistic target of rapamycin (mTOR) signaling pathway is closely associated with fetal brain development. We hypothesized that mTOR signaling might be involved in fetal brain injury and malformation when fetuses are exposed to the IUI environment. A well‐established IUI model was utilized by intrauterine injection of lipopolysaccharide (LPS) to explore the effect of IUI on mTOR signaling in mouse fetal brains. We found that microglia activation in LPS fetal brains was increased, as demonstrated by elevated Iba‐1 protein level and immunofluorescence density. LPS fetal brains also showed reduced neuronal cell counts, decreased cell proliferation demonstrated by low Ki67‐positive density, and elevated neuron apoptosis evidenced by high expression of cleaved Caspase 3. Furthermore, we found that mTOR signaling in LPS fetal brains was elevated at 2 hr after LPS treatment, declined at 6 hr and showed overall inhibition at 24 hr. In summary, our study revealed that LPS‐induced IUI leads to increased activation of microglia cells, neuronal damage, and dynamic alterations in mTOR signaling in the mouse fetal brain. Our findings indicate that abnormal changes in mTOR signaling may underlie the development of future neurological complications in offspring exposed to prenatal IUI.  相似文献   
89.
The chemokine system plays an important role in mediating a proinflammatory microenvironment for tumor growth in hepatocellular carcinoma (HCC). The CXCR6 receptor and its natural ligand CXCL16 are expressed at high levels in HCC cell lines and tumor tissues and receptor expression correlates with increased neutrophils in these tissues contributing to poor prognosis in patients. Availability of pharmacologcal tools targeting the CXCR6/CXCL16 axis are needed to elucidate the mechanism whereby neutrophils are affected in the tumor environment. We report the discovery of a series of small molecules with an exo-[3.3.1]azabicyclononane core. Our lead compound 81 is a potent (EC50 = 40 nM) and selective orally bioavailable small molecule antagonist of human CXCR6 receptor signaling that significantly decreases tumor growth in a 30-day mouse xenograft model of HCC.  相似文献   
90.
In Arabidopsis, stamen elongation, which ensures male fertility, is controlled by the auxin response factor ARF8, which regulates the expression of the auxin repressor IAA19. Here, we uncover a role for light in controlling stamen elongation. By an extensive genetic and molecular analysis we show that the repressor of light signaling COP1, through its targets HY5 and HYH, controls stamen elongation, and that HY5 – oppositely to ARF8 – directly represses the expression of IAA19 in stamens. In addition, we show that in closed flower buds, when light is shielded by sepals and petals, the blue light receptors CRY1/CRY2 repress stamen elongation. Coherently, at flower disclosure and in subsequent stages, stamen elongation is repressed by the red and far‐red light receptors PHYA/PHYB. In conclusion, different light qualities – sequentially perceived by specific photoreceptors – and the downstream COP1–HY5/HYH module finely tune auxin‐induced stamen elongation and thus male fertility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号