首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1303篇
  免费   127篇
  国内免费   179篇
  2024年   4篇
  2023年   29篇
  2022年   26篇
  2021年   37篇
  2020年   61篇
  2019年   59篇
  2018年   67篇
  2017年   55篇
  2016年   59篇
  2015年   76篇
  2014年   85篇
  2013年   113篇
  2012年   64篇
  2011年   53篇
  2010年   59篇
  2009年   64篇
  2008年   65篇
  2007年   59篇
  2006年   62篇
  2005年   59篇
  2004年   52篇
  2003年   49篇
  2002年   34篇
  2001年   32篇
  2000年   36篇
  1999年   26篇
  1998年   34篇
  1997年   13篇
  1996年   31篇
  1995年   22篇
  1994年   8篇
  1993年   18篇
  1992年   13篇
  1991年   15篇
  1990年   9篇
  1989年   9篇
  1988年   10篇
  1987年   10篇
  1986年   3篇
  1985年   9篇
  1984年   6篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1979年   1篇
  1976年   2篇
  1974年   1篇
排序方式: 共有1609条查询结果,搜索用时 31 毫秒
51.
52.
53.
Short rotation coppice (SRC) of willow and poplar might be a promising phytoremediation option since it uses fast growing, high biomass producing tree species with often a sufficient metal uptake. This study evaluates growth, metal uptake and extraction potentials of eight willow clones (Belders, Belgisch Rood, Christina, Inger, Jorr, Loden, Tora and Zwarte Driebast) on a metal-contaminated agricultural soil, with total cadmium (Cd) and zinc (Zn) concentrations of 6.5 ± 0.8 and 377 ± 69 mg kg?1 soil, respectively. Although, during the first cycle, on average generally low productivity levels (3.7 ton DM (dry matter) ha?1 y?1) were obtained on this sandy soil, certain clones exhibited quite acceptable productivity levels (e.g. Zwarte Driebast 12.5 ton DM ha?1 y?1). Even at low biomass productivity levels, SRC of willow showed promising removal potentials of 72 g Cd and 2.0 kg Zn ha?1 y?1, which is much higher than e.g. energy maize or rapeseed grown on the same soil. Cd and Zn removal can be increased by 40% if leaves are harvested as well. Nevertheless, nowadays the wood price remains the most critical factor in order to implement SRC as an acceptable, economically feasible alternative crop on metal-contaminated agricultural soils.  相似文献   
54.
Flavonoid glycosides are highly attractive targets due to their dominant roles in clinical, cosmetic production and in the food industry. In this research, an Escherichia coli strain bearing the reconstructed uridine-diphosphate glucose (UDP-glucose) pathway cassette and a putative glycosyltransferase from Arabidopsis thaliana, was developed as a host for the production of apigenin-7-O-β-d-glucoside (APG) and baicalein-7-O-β-d-glucoside (BCG) from exogenously supplied flavone aglycones (apigenin and baicalein, respectively). In order to improve the yield, genetic engineering of E. coli strains for optimization of intracellular UDP-glucose generation, as well as media optimization were carried out. The production was scaled up using a fed batch fermentation, and the maximal yield of products reached 90.88 μM (39.28 mg L?1) and 76.82 μM (33.19 mg L?1) of APG and BCG, respectively. And, the maximum bioconversion rate corresponded to 90.88% and 76.82% of apigenin and baicalein, respectively.  相似文献   
55.
Variations in seasonal snowfall regulate regional and global climatic systems and vegetation growth by changing energy budgets of the lower atmosphere and land surface. We investigated the effects of snow on the start of growing season (SGS) of temperate vegetation in China. Across the entire temperate region in China, the winter snow depth increased at a rate of 0.15 cm yr?1 (P = 0.07) during the period 1982–1998, and decreased at a rate of 0.36 cm yr?1 (P = 0.09) during the period 1998–2005. Correspondingly, the SGS advanced at a rate of 0.68 day yr?1 (P < 0.01) during 1982–1998, and delayed at a rate of 2.13 day yr?1 (P = 0.07) during 1998–2005, against a warming trend throughout the entire study period of 1982–2005. Spring air temperature strongly regulated the SGS of both deciduous broad‐leaf and coniferous forests, whereas the winter snow had a greater impact on the SGS of grassland and shrubs. Snow depth variation combined with air temperature contributed to the variability in the SGS of grassland and shrubs, as snow acted as an insulator and modulated the underground thermal conditions. In addition, differences were seen between the impacts of winter snow depth and spring snow depth on the SGS; as snow depths increased, the effect associated went from delaying SGS to advancing SGS. The observed thresholds for these effects were snow depths of 6.8 cm (winter) and 4.0 cm (spring). The results of this study suggest that the response of the vegetation's SGS to seasonal snow change may be attributed to the coupling effects of air temperature and snow depth associated with the underground thermal conditions.  相似文献   
56.
Long‐term phenology monitoring has documented numerous examples of changing flowering dates during the last century. A pivotal question is whether these phenological responses are adaptive or not under directionally changing climatic conditions. We use a classic dynamic growth model for annual plants, based on optimal control theory, to find the fitness‐maximizing flowering time, defined as the switching time from vegetative to reproductive growth. In a typical scenario of global warming, with advanced growing season and increased productivity, optimal flowering time advances less than the start of the growing season. Interestingly, increased temporal spread in production over the season may either advance or delay the optimal flowering time depending on overall productivity or season length. We identify situations where large phenological changes are necessary for flowering time to remain optimal. Such changes also indicate changed selection pressures. In other situations, the model predicts advanced phenology on a calendar scale, but no selection for early flowering in relation to the start of the season. We also show that the optimum is more sensitive to increased productivity when productivity is low than when productivity is high. All our results are derived using a general, graphical method to calculate the optimal flowering time applicable for a large range of shapes of the seasonal production curve. The model can thus explain apparent maladaptation in phenological responses in a multitude of scenarios of climate change. We conclude that taking energy allocation trade‐offs and appropriate time scales into account is critical when interpreting phenological patterns.  相似文献   
57.
Previously, we have identified the RUNX1 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from epithelial ovarian cancer (EOC) patients, when compared with primary cultures derived from matched primary (prior to CT) tumors. Here we show that RUNX1 displays a trend of hypomethylation, although not significant, in omental metastases compared with primary EOC tumors. Surprisingly, RUNX1 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. The RUNX1 expression levels were almost identical in primary tumors and omental metastases, suggesting that RUNX1 hypomethylation might have a limited impact on its overexpression in advanced (metastatic) stage of the disease.

Knockdown of the RUNX1 expression in EOC cells led to sharp decrease of cell proliferation and induced G1 cell cycle arrest. Moreover, RUNX1 suppression significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX1 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced.

Taken together, our data are indicative for a strong oncogenic potential of the RUNX1 gene in EOC progression and suggest that RUNX1 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX1 and other members of the RUNX gene family in ovarian tumorigenesis.  相似文献   
58.
Elephant populations are in decline across the African continent, but recent aerial surveys show that populations in Uganda are increasing. However, threats such as poaching and habitat disturbance remain. Having a comprehensive knowledge of the ranging behaviour of Ugandan elephants is crucial to understanding where critical habitat for the species occurs. We investigated various aspects of ranging behaviour of 45 radio-collared elephants (Loxodonta africana) in three areas—Queen Elizabeth Protected Area (QEPA), Murchison Falls (MFPA) Protected Area and Kidepo Valley (KVCA) Conservation Area. We also set Ugandan analyses in a continental context by comparison with home ranges reported in published literature. Elephants within KVCA had larger core ranges than elephants in QEPA or MFPA. Wet season ranges in KVCA were much larger than dry season ranges. The most important core areas in all three national parks were centred around water resources. Home range size was negatively correlated with net primary productivity (NPP) at Ugandan (N = 39 individuals) and continental (N = 17 sites) scales. This study indicates that, at a local scale, factors such as water source location are important in shaping elephant ranging behaviour. At larger scales, factors such as NPP are good predictors of elephant home range size.  相似文献   
59.
Two Gram-negative strains obtained from tank water in a scallop hatchery in Norway, were phenotypically and genotypically characterized in order to clarify their taxonomic position. On the basis of 16S rRNA gene sequence analysis, these isolates, ATF 5.2T and ATF 5.4T, were included in the genus Halomonas, being their closest relatives H. smyrnensis and H. taeanensis, with similarities of 98.9% and 97.7%, respectively. Sequence analysis of the housekeeping genes atpA, ftsZ, gyrA, gyrB, mreB, rpoB, rpoD, rpoE, rpoH, rpoN and rpoS clearly differentiated the isolates from the currently described Halomonas species, and the phylogenetic analysis using concatenated sequences of these genes located them in two robust and independent branches. DNA–DNA hybridization (eDDH) percentage, together with average nucleotide identity (ANI), were calculated using the complete genome sequences of the strains, and demonstrate that the isolates constitute two new species of Halomonas, for which the names of Halomonas borealis sp. nov. and Halomonas niordiana sp. nov. are proposed, with type strains ATF 5.2T (=CECT 9780T = LMG 31367T) and ATF 5.4T (=CECT 9779T = LMG 31227T), respectively.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号