首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1454篇
  免费   73篇
  国内免费   205篇
  2024年   3篇
  2023年   25篇
  2022年   24篇
  2021年   35篇
  2020年   59篇
  2019年   62篇
  2018年   44篇
  2017年   40篇
  2016年   40篇
  2015年   46篇
  2014年   87篇
  2013年   163篇
  2012年   49篇
  2011年   91篇
  2010年   54篇
  2009年   75篇
  2008年   95篇
  2007年   97篇
  2006年   78篇
  2005年   71篇
  2004年   55篇
  2003年   54篇
  2002年   33篇
  2001年   34篇
  2000年   34篇
  1999年   19篇
  1998年   18篇
  1997年   20篇
  1996年   20篇
  1995年   15篇
  1994年   19篇
  1993年   17篇
  1992年   12篇
  1991年   18篇
  1990年   11篇
  1989年   15篇
  1988年   5篇
  1987年   10篇
  1986年   9篇
  1985年   6篇
  1984年   14篇
  1983年   6篇
  1982年   6篇
  1981年   10篇
  1979年   6篇
  1978年   4篇
  1976年   10篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
排序方式: 共有1732条查询结果,搜索用时 272 毫秒
121.
Obesity has become a global problem affecting adults and children alike. Lifestyle choices both personal and industry driven can be blamed for the rise in obesity. One must distinguish between the possibly reversible overweight condition and the almost intractable actual morbid obesity where predisposing genetic factors may come into play. Both however exhibit consequences to health with a severity that cannot be underestimated. Deleterious changes to metabolism can lead to type II diabetes and atherosclerosis and other organ dysfunctions. It has long been recognized that there are two main types of fatty tissue in the body, white adipose tissue (WAT) serving a storage function and brown adipose tissue (BAT) serving a thermogenic function. The new discovery has been that WAT cells can be induced to undergo conversion (browning) to BAT to yield what is called beige adipose tissue, acquiring the thermogenic function. The clinical dream is to be able to promote browning and to induce, what may be called, burning off the fat. In this B&B article I entice the reader with a recent study that shows how two key hormones insulin and leptin operate cooperatively in the brain to monitor and regulate energy balance and the downstream effect of browning. I present other studies to add additional perspectives to the understanding of the mechanisms in peripheral tissues and other hormones that play additional key roles. Whether obesity can be conquered therapeutically by manipulating the regulatory systems is still an open question.  相似文献   
122.
Epigallocatechin gallate (EGCG), the major flavonoid in green tea, is consumed via tea products and dietary supplements, and has been tested in clinical trials. However, EGCG can cause hepatotoxicity in humans and animals by unknown mechanisms. Here EGCG effects on rat liver mitochondria were examined. EGCG showed negligible effects on oxidative phosphorylation at 7.5–100 μM in normal mitochondria. However, respiratory chain complexes (RCCs) were profoundly inhibited by EGCG in mitochondria undergoing Ca2+ overload-induced mitochondrial permeability transition (MPT). As RCCs are located in mitochondrial inner membranes (IM) and matrix, it was reasoned that EGCG could not readily pass through IM to affect RCCs in normal mitochondria but may do so when IM integrity is compromised. This speculation was substantiated in three ways. (1) Purified EGCG-bound proteins were barely detectable in normal mitochondria and contained no RCCs as determined by Western blotting, but swelling mitochondria contained about 1.5-fold more EGCG-bound proteins which included four RCC subunits together with cyclophilin D that locates in mitochondrial matrix. (2) Swelling mitochondria consumed more EGCG than normal ones. (3) The MPT blocker cyclosporine A diminished the above-mentioned difference. Among four subunits of RCC II, only SDHA and SDHB which locate in mitochondrial matrix, but not SDHC or SDHD which insert into the IM, were found to be EGCG targets. Interestingly, EGCG promoted Ca2+ overload-induced MPT only when moderate MPT already commenced. This study identified hepatic RCCs as targets for EGCG in swelling but not normal mitochondria, suggesting EGCG may trigger hepatotoxicity by worsening pre-existing mitochondria abnormalities.  相似文献   
123.
为研究高糖高脂饮食对新西兰兔(Oryctolagus cuniculus)肾小管间质纤维化的影响,将20只雄兔随机均分2组,分别喂正常饲料(对照组)和高糖高脂饲料(模型组),每月测空腹血糖和甘油三酯(TG),5个月后取尿液测尿糖、微量白蛋白(mAlb)和N-乙酰β-氨基葡萄糖苷酶(NAG),H.E、VG染色观察肾髓质病理改变,计算肾小管间质纤维化指数(TIFI)和胶原纤维面积,免疫组化测Ⅳ型胶原、纤维连接蛋白(FN)和转化生长因子β1(TGF-β1)的蛋白表达。结果显示,与对照组相比,模型组血糖、TG、尿糖、mAlb和NAG上升(P0.05或P0.01);肾小管间质肿胀,炎症细胞浸润,胶原纤维面积增加(22.47%±5.66%vs.9.43%±3.03%,P0.01),TIFI升高(2.369±0.6734vs.0.6810±0.2248,P0.01);Ⅳ型胶原、FN和TGF-β1的表达显著增加(P0.01)。上述结果说明,高糖高脂喂养兔5个月可导致肾小管、间质的结构和功能发生改变,细胞外基质表达增加,促进纤维化形成。  相似文献   
124.
125.
Numerous studies have shown that green tea polyphenols can be degraded in the colon, and there is abundant knowledge about the metabolites of these substances that appear in urine and plasma after green tea ingestion. However, there is very little information on the extent and nature of intestinal degradation of green tea catechins in humans. Therefore, the aim of this study was to examine in detail the microbial metabolism and chemical stability of these polyphenols in the small intestine using a well-established ex vivo model. For this purpose, fresh ileostomy fluids from two probands were incubated for 24 h under anaerobic conditions with (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin 3-O-gallate (ECG), (-)-epigallocatechin (EGC), (-)-epigallocatchin 3-O-gallate (EGCG) and gallic acid (GA). After lyophilisation and extraction, metabolites were separated, identified and quantified by high performance liquid chromatography-photodiode array detection (HPLC-DAD) and HPLC-ESI-tandem mass spectrometry. Two metabolites of EC and C (3', 4', 5'-trihydroxyphenyl-γ-valerolactone and 3', 4'-dihydroxyphenyl-γ-valerolactone) were identified. In addition, 3', 4', 5'-trihydroxyphenyl-γ-valerolactone was detected as a metabolite of EGC, and (after 24-h incubation) pyrogallol as a degradation product of GA. Cleavage of the GA esters of EGCG and ECG was also observed, with variations dependent on the sources (probands) of the ileal fluids, which differed substantially microbiotically. The results provide new information about the degradation of green tea catechins in the gastrointestinal tract, notably that microbiota-dependent liberation of GA esters may occur before these compounds reach the colon.  相似文献   
126.
Phenolic compounds, named integracin D (1), (7′R, 8′S, 8S)-8-hydroxyisoguaiacin (3), (2R, 3R) pinobanksin-3-caffeoylate (5) and threo-8S-7-methoxysyringylglycerol (6), respectively, were isolated from the Chinese mangrove plant Laguncularia racemosa (L) Gaertn. f. (Combretaceae), together with 23 known phenolic metabolites. Their structures were elucidated on the basis of extensive spectroscopic analyses including that of IR, UV, MS, CD, 1D and 2D NMR spectra as well as by comparison with literature data. Compound 5 showed significant anti-oxidative activity in the DPPH and TEAC free-radical-scavenging assays, while several of the phenolic compounds were tested for protein kinase inhibitory activity in an assay involving 24 different human tumor related protein kinases. Compounds 5, 7, and 23 showed potential inhibition with IC50 values between 2.2 and 3.6 μg/mL toward individual kinases. The ellagic acid derivatives were tested for insecticidal activity.  相似文献   
127.
Thioredoxin (TRX) is involved in cell redox homeostasis. In addition, it is responsible for maintaining proteins in their reduced state. In our study, a Fenneropenaeus chinensis thioredoxin (FcTRX) gene was identified from the Chinese white shrimp. The full length of FcTRX was 777 bp, including a 60 bp 5′ untranslated region (UTR), a 318 bp open reading frame (ORF) encoding a 105 amino acids protein, and a 399 bp 3′ UTR. FcTRX contained a TRX domain with a conserved motif of Cys-Gly-Pro-Cys (CGPC). No signal peptide was predicted by SMART analysis. The molecular mass and pI of FcTRX were 12 kDa and 4.62, respectively. FcTRX is a widely distributed gene, and its mRNA is detected in hemocytes, hearts, hepatopancreas, gills, stomach, and intestine from an unchallenged shrimp. The expression level of FcTRX was the highest in hepatopancreas, where it was down-regulated to the lowest level at 12 h white spot syndrome virus (WSSV) challenge. In the gills, it went up to the highest level at 6 h. Western blot showed that FcTRX protein in hepatopancreas challenged with WSSV was down-regulated from 2 h to 12 h and then restored to the level similar to that of unchallenged shrimp at 24 h. In the gills challenged with WSSV, the FcTRX protein was up-regulated from 6 h to 24 h. Our research indicated its possible role in the anti-WSSV innate immunity of shrimps.  相似文献   
128.
Dye decolorizing potential of the white rot fungus Ganoderma lucidum KMK2 was demonstrated for recalcitrant textile dyes. G. lucidum produced laccase as the dominant lignolytic enzyme during solid state fermentation (SSF) of wheat bran (WB), a natural lignocellulosic substrate. Crude enzyme shows excellent decolorization activity to anthraquinone dye Remazol Brilliant Blue R (RBBR) without redox mediator whereas diazo dye Remazol Black-5 (RB-5) requires a redox mediator. Polyacrylamide gel electrophoresis (PAGE) of crude enzyme confirms that the laccase enzyme was the major enzyme involved in decolorization of either dyes. Native and SDS-PAGE indicates that the presence of single laccase with molecular weight of 43 kDa. N-Hydroxybenzotriazole (HBT) at a concentration of 1 mM was found as the best redox mediator. RB-5 (50 mg l−l) was decolorized by 62% and 77.4% within 1 and 2 h, respectively by the crude laccase (25 U ml−1). RBBR (50 mg l−l) was decolorized by 90% within 20 h, however, it was more efficient in presence of HBT showing 92% decolorization within 2 h. Crude laccase showed high thermostability and maximum decolorization activity at 60 °C and pH 4.0. The decolorization was completely inhibited by the laccase inhibitor sodium azide (0.5 mM). Enzyme inactivation method is a good method which averts the undesirable color formation in the reaction mixture after decolorization. High thermostability and efficient decolorization suggest that this crude enzyme could be effectively used to decolorize the synthetic dyes from effluents.  相似文献   
129.
The subfamily of POXA3 laccase isoenzymes produced by the fungus Pleurotus ostreatus has been characterized as an example of the complexity and heterogeneity of fungal isoenzyme patterns. Two isoenzymes, POXA3a and POXA3b, were previously purified, exhibiting an unusual heterodimeric structure composed of a large (67 kDa) and a small (18 or 16 kDa) subunit. A unique gene encodes the large subunit of both POXA3a and POXA3b, but alternative splicing produces two variants—differing for an insertion of four amino acids—for each isoenzyme. Two genes encoding POXA3a and POXA3b small subunits have been identified, and the corresponding amino acid sequences show only two amino acid substitutions. The 18- and 16-kDa subunits of both POXA3a and POXA3b differ for N-glycosylation at Asn150 of the 16-kDa subunit. The POXA3 large subunit 3D model allows us to highlight peculiarities of this molecule with respect to the laccases whose 3D structures are known.  相似文献   
130.
kitl非编码区突变导致RNA剪切异常的小鼠   总被引:4,自引:0,他引:4  
本文主要采用RT-RCR技术从kitl1-bao纯合子和正常C57BL/6(B6)小鼠总RNA中扩增出kitl基因片段,测序后与GenBank(登录号:NM.013598)序列比对,找到mRNA上突变部位。PCR扩增kitl基因组DNA上对应部位进一步测序验证。结果发现kitl1-bao突变纯合子kitl基因mRNA缺少第8号外显子。在基因组DNA上kitl基因第8号内含子第2个碱基由T转换为C,是引起mRNA剪接错误的原因  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号