首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5913篇
  免费   376篇
  国内免费   405篇
  2024年   5篇
  2023年   51篇
  2022年   57篇
  2021年   92篇
  2020年   116篇
  2019年   134篇
  2018年   116篇
  2017年   134篇
  2016年   124篇
  2015年   127篇
  2014年   231篇
  2013年   249篇
  2012年   192篇
  2011年   247篇
  2010年   180篇
  2009年   263篇
  2008年   256篇
  2007年   297篇
  2006年   286篇
  2005年   275篇
  2004年   233篇
  2003年   244篇
  2002年   197篇
  2001年   185篇
  2000年   174篇
  1999年   217篇
  1998年   188篇
  1997年   169篇
  1996年   151篇
  1995年   143篇
  1994年   151篇
  1993年   161篇
  1992年   106篇
  1991年   123篇
  1990年   98篇
  1989年   100篇
  1988年   64篇
  1987年   73篇
  1986年   85篇
  1985年   74篇
  1984年   75篇
  1983年   25篇
  1982年   58篇
  1981年   50篇
  1980年   38篇
  1979年   29篇
  1978年   16篇
  1977年   15篇
  1976年   8篇
  1970年   3篇
排序方式: 共有6694条查询结果,搜索用时 31 毫秒
41.
The pattern of the activity of arginine decarboxylase (ADC) and omithine decarboxylase (ODC) involved in polyamine synthesis in ripening wheat seeds was examined. The aim was to study the polyamines and the activity of the two enzymes in correlation with the growth processes occurring in the developing wheat seeds. The results obtained showed a very different pattern of polyamine content in the two organs of caryopsis, and that the two enzymes in the embryos have a higher activity than in the endosperms. Moreover, while in the embryos the ADC exhibits higher activity than the ODC, in the endosperms the activity of ODC is about similar to that of ADC. This pattern is discussed in relation to the different histological characteristics of embryo and endosperm tissues during seed development.  相似文献   
42.
本文报道美味猕猴桃(Actintdia delictosa cv.Hayward)(6x)和毛花猕猴桃(A.eria-ntha)(2x)杂交当代种子的胚胎学分析和胚援救的结果:1.根据杂交种子外部形态和胚胎发育程度,区分为正常的和败育的两类,其比率接近1:1。正常种子的胚发育分化正常,且含有适量胚乳。败育种子中,除少数不含胚和胚乳外,绝大多数种子的胚发育终止于球形、心形和早子叶阶段,胚体畸形。胚乳处于消失或完全解体。2.在被试8组培养基中,最适合胚萌发和生长的是:MS+IAA0.5ppm+GA_30.5ppm,MS+2ip2ppm+IAA0.5ppm+GA_30.5ppm和 MS+2ip2ppm+GA_30.5ppm。适于实生苗生长的培养基为 MS+GA_30.5ppm 和 MS 培养基。在 MS+BAP2ppm 和 MS+IAA0.5ppm+GA_30.5ppm 培养基上,一些正常种子和少数不正常种子胚的下胚轴直接形成了许多不定芽,从而诱导产生了更多的杂种植株。但是在MS十BAP2ppm+GA_30.5ppm,MS+BAP2ppm+IAA0.5ppm 和 MS+2ip2ppm+GA_30.5ppm培养基上,虽然胚产生了愈伤组织,但都未分化出器官。杂种实生苗根尖细胞近半数的含有近4倍性染色体数(4x=116),约半数为其他倍性。  相似文献   
43.
多胺对小麦离体叶片衰老的调节   总被引:31,自引:0,他引:31  
  相似文献   
44.
Summary The ability of embryos at different developmental stages to form plants in vitro has been studied in cultivated Cucumis sativus L. and in the wild species C. zeyheri 2 x Sond. and C. metuliferus Naud. On MS medium containing 3.5% sucrose, 0.1 mg 1–1 kinetin (Kn) and 0.01 mg 1–1 indoleacetic acid (IAA), proembryos (0.03–0.05 mm) and early globular embryos (0.05–0.08 mm) from the wild species developed into plants in low frequencies of 8% and 21%, respectively. These embryos should be surrounded by the embryo sac tissue. On the same medium late globular (0.08–0.1 mm) and early heart-stage embryos (0.1–0.3 mm) developed into plants in moderately high and high frequencies of 48% and 83%, respectively. The presence of the embryo sac at these stages was still beneficial, but no longer a prerequisite. Late heart-stage embryos (0.3–0.8 mm) also showed high frequencies of plant formation, 63%, if Kn was applied at a concentration of 1 mg 1–1. From the early cotyledon stage onwards, the frequency of plant formation gradually decreased, reaching a minimum at the late cotyledon stage. Subsequently it began to increase again up to the late maturation stage. The poor plant formation shown by the intermediate-aged embryos could be improved slightly by lowering the sucrose concentration to 0.5% and by increasing the Kn concentration to 10 mg 1–1. Relative to the wild species, embryos of C. sativus showed lower percentages of plant formation. The optimum sucrose concentration was 2% for the heart-stage C. sativus embryos. In all three species the ability to form plants strongly decreased with increasing embryo age, from early to late cotyledon. This is thought to be caused by the increasing tendency of the embryos at these stages to continue in vitro the normal embryo development.  相似文献   
45.
Summary Affinity purified preparations of the galactose-binding lectin from gastrulating chick blastoderms consist of three main polypeptides. Two of these have been identified as the 14 kD and 16 kD galactose-binding lectins. A third one migrates in SDS-PAGE gels with a relative molecular weight of 6,500±500 and has been identified as an apolipoprotein (Apo) of plasma very low density lipoproteins, Apo-VLDL-II. We have studied the localization of these polypeptides using immunofluorescence and ultrastructural immunocytochemistry with peroxidase and protein-A gold. The 14 kD lectin occurs in the intracellular yolk where it is mainly present within the electron lucent component. The 16 kD is also present in the intracellular yolk platelets, but tends to predominate in the electron-dense component. In addition, the 16 kD lectin is also present in pleiomorphic yolk-associated organelles and in the extracellular matrix. Apo-VLDL-II is also localized in the electron-lucent component of the yolk platelet and in the extracellular matrix. Our results suggest that the lectin(s) are associated with Apo-VLDL-II in the yolk platelet, and may subsequently become externalized.  相似文献   
46.
研究表明,三属杂种处于单核中晚期阶段的花粉最适于诱导形成愈伤组织。低温预处理对促进三属杂种花粉愈伤组织的诱导有一定的作用。利用以马铃薯提取物为基础物质的马铃薯-Ⅱ培养基作诱导培养基,其愈伤组织诱导与分化的频率比目前两个较好的合成培养基要高。同一个三属杂种F_1春、秋播种植株之间在形成愈伤组织的能力上有较大的差异,秋播材料形成愈伤组织的能力明显高于春播材料。F_(?)杂种植株诱导愈伤组织和分化植株的频率均比F_1杂种明显提高。  相似文献   
47.
鹅观草与大麦属间杂种的形态和细胞遗传学研究   总被引:7,自引:0,他引:7  
蒋继明  刘大钧 《遗传学报》1990,17(5):373-376
用活体/离体幼胚培养法成功地获得了鹅观草(Roegneria kamooji,2n=12,SSHHYY)与大麦(Hordeum vulgare,2n=14,11)间的属间杂种。杂交结实率为31.4%,胚培成苗率60.9%。杂种表现一年生,具有很强的生活力,形态上偏向鹅观草。F_1自交不孕,用大麦回交亦不结实。杂种具有预期的2n=28(SHYI)条染色体,花粉母细胞减数分裂中期Ⅰ平均形成26.38个单价体,0.67个棒状二价体,0.12个环状二价体和0.02个三价体。本文对双亲染色体组间的同源性以及在大麦育种中利用鹅观草种质的可能性进行了讨论。  相似文献   
48.
Summary The expression of vimentin and keratins is analysed in the early postimplantation embryo of the rabbit at 11 days post conceptionem (d.p.c.) using a panel of monoclonal antibodies specific for single intermediate filament polypeptides (keratins 7, 8, 18, 19 and vimentin) and a pan-epithelial monoclonal keratin antibody. Electrophoretic separation of cytoskeletal preparations obtained from embryonic tissues, in combination with immunoblotting of the resulting polypeptide bands, demonstrates the presence of the rabbit equivalents of human keratins 8, 18, and vimentin in 11-day-old rabbit embryonic tissues. Immunohistochemical staining shows that several embryonic epithelia such as notochord, surface ectoderm, primitive intestinal tube, and mesonephric duct, express keratins, while others (neural tube, dermomyotome) express vimentin, and a third group (coelomic epithelia) can express both. Similarly, of the mesenchymal tissues sclerotomal mesenchyme expresses vimentin, while somatopleuric mesenchyme (abdominal wall) expresses keratins, and splanchnopleuric mesenchyme (dorsal mesentery) expresses both keratins and vimentin. While these results are in accordance with most results of keratin and vimentin expression in embryos of other species, they stand against the common concept of keratin and vimentin specificity in adult vertebrate tissues. Furthermore, keratin and vimentin are not expressed in accordance with germ layer origin of tissues in the mammalian embryo; rather the expression of these proteins seems to be related to cellular function during embryonic development.Supported by the Deutsche Forschungsgemeinschaft and by the Netherlands Cancer Foundation  相似文献   
49.
Evidence is presented that in the R and P genomes (Secale cereale andAgropyron cristatum, respectively) of theTriticeae there exist closely related 350-family DNA sequences in the terminal heterochromatin. This observation is compared to the relationships between these two genomes derived from a comparison of theNor and5 S DNA loci as well as the available data on morphological characters, chromosome pairing, and isozyme studies. It is concluded that the R and P genomes are not closely related and that the common presence of very similar 350-family DNA sequences reflects the parallel amplification of this family of DNA sequences.  相似文献   
50.
Summary Interspecific hybrids between Brassica napus and B. oleracea are difficult to produce, and previous attempts to transfer economic characters from one species to the other have largely been unsuccessful. In these studies, oilseed rape cv. Tower (2n38) (B. napus) was crossed with broccoli and kale (2n18) (B. oleracea), and hybrid plants were developed from embryos in culture by either organogenesis or somatic embryogenesis. In rape × broccoli, F1 plants were regenerated from hybrid embryos and the plants produced viable selfed seeds. F5 plants (2n38) homozygous for white flower colour were selected for high oil content (47%) and Line 15; a selection from these plants produced fertile hybrids with rape, broccoli and kale without embryo culture. In reciprocal crosses between oilseed rape cv. Tower and an aphid resistant diploid kale, 28 and 56 chromosome F1 hybrid plants were regenerated from somatic embryos. The 56 chromosome plants were self-fertile and it was concluded from F2 segregation ratios that a single dominant gene controls resistance to cabbage aphid in kale. The 28 chromosome F1's were self-sterile, but these and the 56 chromosome F1's could be backcrossed to rape and kale. A cross between the F1 (2n56) and a forage rape resulted in the selection of a cabbage aphid (Brevicoryne brassicae L.) resistant line (Line 3). Both Line 15 and Line 3 can serve as bridges for gene interchange between B. campestris, B. napus and B. oleracea, which has not been possible hitherto. Hybridisations between rape and tetraploid kale produced F1 plants with 37 chromosomes. One F2 plant possessed coronal scales and the inheritance was shown to be controlled by a single recessive gene unlinked to petal colour.This paper is dedicated to Mr. T. P. Palmer, a colleague and close friend who retired from the DSIR as Assistant Director of the Crop Research Division in September 1984  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号