首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   576篇
  免费   26篇
  国内免费   32篇
  2024年   1篇
  2023年   13篇
  2022年   13篇
  2021年   27篇
  2020年   17篇
  2019年   16篇
  2018年   32篇
  2017年   17篇
  2016年   13篇
  2015年   21篇
  2014年   29篇
  2013年   51篇
  2012年   22篇
  2011年   34篇
  2010年   32篇
  2009年   33篇
  2008年   43篇
  2007年   32篇
  2006年   29篇
  2005年   24篇
  2004年   16篇
  2003年   12篇
  2002年   16篇
  2001年   7篇
  2000年   3篇
  1999年   9篇
  1998年   6篇
  1997年   6篇
  1996年   3篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1987年   2篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   5篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有634条查询结果,搜索用时 15 毫秒
41.
microRNAs (miRNAs) are non-coding small RNAs regulating gene expression, cell growth, and differentiation. Although several miRNAs have been implicated in cell growth and differentiation, it is barely understood their roles in adipocyte differentiation. In the present study, we reveal that miR-27a is involved in adipocyte differentiation by binding to the PPARγ 3′-UTR whose sequence motifs are highly conserved in mammals. During adipogenesis, the expression level of miR-27a was inversely correlated with that of adipogenic marker genes such as PPARγ and adiponectin. In white adipose tissue, miR-27a was more abundantly expressed in stromal vascular cell fraction than in mature adipocyte fraction. Ectopic expression of miR-27a in 3T3-L1 pre-adipocytes repressed adipocyte differentiation by reducing PPARγ expression. Interestingly, the level of miR-27a in mature adipocyte fraction of obese mice was down-regulated than that of lean mice. Together, these results suggest that miR-27a would suppress adipocyte differentiation through targeting PPARγ and thereby down-regulation of miR-27a might be associated with adipose tissue dysregulation in obesity.  相似文献   
42.
Aggregated LDL (agLDL) is internalized by LDL receptor-related protein (LRP1) in vascular smooth muscle cells (VSMCs) and human monocyte-derived macrophages (HMDMs). AgLDL is, therefore, a potent inducer of massive intracellular cholesteryl ester accumulation in lipid droplets. The adipocyte differentiation-related protein (ADRP) has been found on the surface of lipid droplets. The objectives of this work were to analyze whether agLDL uptake modulates ADRP expression levels and whether the effect of agLDL internalization on ADRP expression depends on LRP1 in human VSMCs and HMDMs. AgLDL strongly upregulates ADRP mRNA (real-time PCR) and protein expression (Western blot) in human VSMCs (mRNA: by 3.06-fold; protein: 8.58-fold) and HMDMs (mRNA: by 3.5-fold; protein: by 3.71-fold). Treatment of VSMCs and HMDMs with small anti-LRP1-interfering RNA (siRNA-LRP1) leads to specific inhibition of LRP1 expression. siRNA-LRP1 treatment significantly reduced agLDL-induced ADRP overexpression in HMDMs (by 69%) and in VSMCs (by 53%). Immunohystochemical studies evidence a colocolocalization between ADRP/macrophages and ADRP/VSMCs in advanced lipid-enriched atherosclerotic plaques. These results demonstrate that agLDL-LRP1 engagement induces ADRP overexpression in both HMDMs and human VSMCs and that ADRP is highly expressed in advanced lipid-enriched human atherosclerotic plaques. Therefore, LRP1-mediated agLDL uptake might play a pivotal role in vascular foam cell formation.  相似文献   
43.
By capturing time-lapse images of primary stromal-vascular cells (SVCs) derived from rat mesenteric adipose tissue, we revealed temporal and spatial variations of lipid droplets (LDs) in individual SVCs during adipocyte differentiation. Numerous small LDs (a few micrometers in diameter) appeared in the perinuclear region at an early stage of differentiation; subsequently, several LDs grew to more than 10 microm in diameter and occupied the cytoplasm. We have developed a method for the fluorescence staining of LDs in living adipocytes. Time-lapse observation of the stained cells at higher magnification showed that nascent LDs (several 100 nm in diameter) grew into small LDs while moving from lamellipodia to the perinuclear region. We also found that adipocytes are capable of division and that they evenly distribute the LDs between two daughter cells. Immunofluorescence observations of LD-associated proteins revealed that such cell divisions of SVCs occurred even after LDs were coated with perilipin, suggesting that the "final" cell division during adipocyte differentiation occurs considerably later than that characterized in 3T3-L1 cells. Our time-lapse observations have provided a detailed account of the morphological changes that SVCs undergo during adipocyte division and differentiation.  相似文献   
44.
45.
Osteoblasts and adipocytes are thought to derive from a common bone marrow stromal cell (BMSC) precursor. Activation of the canonical Wnt signaling pathway plays a pivotal role in the differentiation of BMSCs along either of these two lineages, promoting osteogenesis and inhibiting adipogenesis. Liganded nuclear receptors, including the vitamin D receptor (VDR) and peroxisomal proliferator-activated receptor gamma (PPARgamma), can also affect BMSCs differentiation. To address whether VDR ablation modulates the differentiation of BMSCs into the osteoblast or adipogenic lineages, BMSCs were isolated from VDR null mice and from their wild-type littermates. VDR ablation did not alter osteoblastic differentiation. However, when cultured under adipogenic conditions, BMSCs from the VDR null mice expressed higher mRNA levels of PPARgamma and of markers of adipogenic differentiation. An increase in the size and number of mature adipocyte foci was also observed in cultures isolated from VDR null mice relative to those isolated from wild-type mice. To address whether the increased adipogenesis observed in the VDR null cultures was associated with inhibition of the canonical Wnt signaling pathway, mRNA levels for DKK1 and SFRP2 were examined. Cultures from the VDR null mice expressed higher levels of mRNA encoding DKK1 and SFRP2 than did the wild-type cultures. This difference is, at least in part, due to ligand-dependent actions of the VDR, since 1,25-dihydroxyvitamin D3 suppressed DKK1 and SFRP2 expression in wild-type cultures. Thus, the VDR inhibits adipogenesis of BMSCs at least in part by suppressing the expression of inhibitors of the canonical Wnt signaling pathway.  相似文献   
46.
干预GPR1通路对实验性小鼠脂肪累积的影响   总被引:1,自引:0,他引:1  
一直以来,肥胖是令人担忧和烦恼的健康问题,可导致包括2型糖尿病在内的代谢综合征发生.与肥胖相关疾病的发病机制是多因子影响的结果,但是,越来越多的证据表明,脂肪组织分泌的细胞因子(脂联素、瘦素、TNF-α等)的改变,以及局部的炎症反应对于这些疾病的发生具有重要作用.Chemerin(也被称为他扎罗汀诱导基因2或者视黄酸受体反应子2),是近年来发现的一种脂肪细胞因子,是G蛋白偶联受体1(GPR1)的配体,在调节代谢、先天免疫等方面具有重要的作用.为了研究Chemerin及其受体GPR1对小鼠脂肪累积的影响,本课题组通过高脂饲料喂养,成功建立小鼠肥胖模型,利用si RNA干扰技术沉默小鼠和分化前3T3-L1细胞中Chemerin或GPR1基因的表达发现:a.Chemerin及其受体GPR1在高脂饲料喂养小鼠的腹股沟脂肪以及肩胛下脂肪中的表达高于正常饲料组;b.沉默C57BL/6小鼠体内Chemerin或GPR1基因的表达后,肝脏以及腹股沟脂肪组织中脂质的累积受到抑制;c.3T3-L1细胞在体外分化成熟过程中,Chemerin和GPR1也呈高表达的趋势,沉默分化前3T3-L1细胞中Chemerin或GPR1基因的表达后,3T3-L1细胞向脂肪细胞的分化受到影响,降低了脂肪细胞中脂质的累积以及与脂质代谢相关基因的表达,改变了成熟脂肪细胞中新陈代谢功能.这些结果提示,Chemerin及其受体GPR1可能在小鼠脂肪累积中具有调控作用.综上所述,Chemerin/GPR1可能是一种调节脂肪组织中脂质累积的潜在信号通路,为肥胖症等代谢紊乱疾病的治疗提供了可能的作用靶点.  相似文献   
47.
Adaptive thermogenesis is the cellular process transforming chemical energy into heat in response to cold. A decrease in adaptive thermogenesis is a contributing factor to obesity. However, the molecular mechanisms responsible for the compromised adaptive thermogenesis in obese subjects have not yet been elucidated. In this study we hypothesized that Toll-like receptor 4 (TLR4) activation and subsequent inflammatory responses are key regulators to suppress adaptive thermogenesis. To test this hypothesis, C57BL/6 mice were either fed a palmitate-enriched high fat diet or administered with chronic low-dose LPS before cold acclimation. TLR4 stimulation by a high fat diet or LPS were both associated with reduced core body temperature and heat release. Impairment of thermogenic activation was correlated with diminished expression of brown-specific markers and mitochondrial dysfunction in subcutaneous white adipose tissue (sWAT). Defective sWAT browning was concomitant with elevated levels of endoplasmic reticulum (ER) stress and autophagy. Consistently, TLR4 activation by LPS abolished cAMP-induced up-regulation of uncoupling protein 1 (UCP1) in primary human adipocytes, which was reversed by silencing of C/EBP homologous protein (CHOP). Moreover, the inactivation of ER stress by genetic deletion of CHOP or chemical chaperone conferred a resistance to the LPS-induced suppression of adaptive thermogenesis. Collectively, our data indicate the existence of a novel signaling network that links TLR4 activation, ER stress, and mitochondrial dysfunction, thereby antagonizing thermogenic activation of sWAT. Our results also suggest that TLR4/ER stress axis activation may be a responsible mechanism for obesity-mediated defective brown adipose tissue activation.  相似文献   
48.

Background

Obesity is widely recognised as an important risk factor for colorectal cancer (CC).

Aim

The study aimed to evaluate the effect of CC on circulating concentrations and gene expression levels of inflammatory and angiogenesis-related factors in human visceral adipose tissue (VAT).

Methods

VAT biopsies were obtained from 18 healthy individuals and 11 patients with CC. Real-time polymerase chain reactions were performed to quantify gene expression levels and zymographic analyses were used to determine the activity of matrix metalloproteinases (MMPs).

Results

Patients with CC exhibited increased mRNA expression levels of lipocalin-2 (P=.014), osteopontin (P=.027), tumor necrosis factor-α (TNF-α) (P=.016) and chitinase-3 like-1 (P=.006) compared to control subjects in VAT. Gene expression levels of hypoxia-inducible factor-1 α, vascular endothelial growth factor and MMP-2 were significantly higher (P<.05) in VAT of patients with CC. The expression of insulin-like growth factor I, insulin growth factor binding protein 3 and MMP-9 followed the same trend, although no significant differences were reached. The enzymatic activity of MMP-9 was increased (P<.001) in patients with CC. Furthermore, individuals with CC showed increased (P<.05) circulating concentrations of the inflammatory markers interleukin-6, tumour necrosis factor α and hepatocyte growth factor, whereas levels of the anti-inflammatory adipokine adiponectin were decreased (P<.01).

Conclusion

These findings represent the first observation that mRNA levels of the novel inflammatory factors lipocalin-2, chitinase-3 like-1 and osteopontin are increased in human VAT of subjects with CC. This observation together with the up-regulation of angiogenic factors suggests that adipokines secreted by VAT may be involved in the development of colon cancer.  相似文献   
49.
Melanocortins, besides their central roles, have also recently been reported to regulate adipocyte metabolism. In this study, we attempted to characterize the mechanism underlying alpha-melanocyte-stimulating hormone (MSH)-induced lipolysis, and compared it with that of the adrenocorticotrophin hormone (ACTH) in 3T3-L1 adipocytes. Similar to ACTH, MSH treatment resulted in the release of glycerol into the cell supernatant. The activity of hormone-sensitive lipase, a rate-limiting enzyme, which is involved in lipolysis, was significantly increased by MSH treatment. In addition, a variety of kinases, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) were also phosphorylated as the result of MSH treatment, and their specific inhibitors caused a reduction in MSH-induced glycerol release and HSL activity, indicating that MSH-induced lipolysis was mediated by these kinases. These results suggest that PKA and ERK constitute the principal signaling pathways implicated in the MSH-induced lipolytic process via the regulation of HSL in 3T3-L1 adipocytes.  相似文献   
50.
BACKGROUND: Mesenchymal stem cells (MSCs) have drawn considerable attention as vehicles for cell- or gene-based therapies, yet various problems still exist for current gene delivery vectors. On the other hand, baculovirus has emerged as a novel gene therapy vector, but its transduction of stem cells has not been reported. METHODS: A recombinant baculovirus expressing the enhanced green fluorescent protein (EGFP) was constructed to transduce human MSCs derived from umbilical cord blood (uMSCs) or bone marrow (bMSCs). RESULTS: In this study, we demonstrated for the first time that human uMSCs or bMSCs could be transduced by baculovirus with high efficiencies (up to approximately 72.8% and 41.1%, respectively) and significantly elevated transgene (enhanced green fluorescent protein, EGFP) expression upon incubation with unconcentrated virus and phosphate-buffered saline for 4 h at 25 degrees C. The transduction efficiency into bMSCs could be further increased to approximately 72.2% by lowering the cell density. The improved transgene expression was partly attributed to the enhanced virus uptake upon transduction, as determined by quantitative real-time polymerase chain reaction (Q-PCR). MSC growth was not obstructed by baculovirus transduction itself, but was somewhat hampered by EGFP expression. Nonetheless, the baculovirus-transduced cells remained capable of differentiating into adipogenic lineage. The adipogenic progenitors appeared more permissive to baculovirus transduction than the undifferentiated bMSCs, thus allowing for the maintenance and enhancement of transgene expression by repeated transduction after subculture. CONCLUSIONS: These findings implicate the potential applications of baculovirus as an alternative vector to genetically modify MSCs for ex vivo gene therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号