首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   1篇
  国内免费   4篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   7篇
  2013年   5篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   4篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   9篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   6篇
  1988年   3篇
  1987年   1篇
  1985年   2篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
31.
披碱草属与大麦属系统关系的研究   总被引:23,自引:0,他引:23  
禾本科中,披碱草属Elymus L.为多倍体属,约含150余种;大麦属Hordeum L.具二倍体和多倍体,约有40余种,该两属均广泛地分布于全球温带地区。该两属,尤其是披碱草属的系统分类较为困难。基于形态学的传统研究认为这两个属的系统关系较远,而细胞学研究的资料却表明,披碱草属的H染色体组起源于大麦属。笔者对来源不同的披碱草属和大麦属的物种进行了远缘杂交,并对其属间杂种F1的减数分裂中期I染色体配对行为进行了分析。结果表明,若以披碱草属作母本,该两属有相对较高的杂交亲合力,通过对杂种幼胚进行分割和离体培养,也能获得杂种F1植株。属间杂种植株的形态介于双亲之间,但更接近于披碱草属,杂种的生殖器官发育不健全,而且所有的杂种F1均完全不育。细胞学的观察结果表明,这两个属间的杂种F1通常具有较低的减数分裂中期I染色体配对数,但有较大的变异。通过笔者的工作及掌握的形态学和细胞学的资料分析认为:披碱草属和大麦属的亲缘关系较为复杂,不能一概而论。含H染色体组的披碱草属和大麦属物种有着较近的亲缘关系,但这两个属中所含的H染色体组已产生了程度不同的分化;不含H染色体组的披碱草属及大麦属的物种具有较远的亲缘关系。  相似文献   
32.
Kunduru is an important Anatolian landrace having peculiar traits that are appreciated by farmers and breeders. 33 accessions known as Kunduru collected by ICARDA from six geographical provinces of Turkey, were used to study the phenotypic and genotypic intra-diversity. Kunduru landraces exhibited high intra-diversity for most of the studied morphological traits. GPC (12.10–14.90%), vitreousness (75–100%), TKW (31.80–56.70 g), YP (4.70–8.00 ppm), b*-value (14.30–19.50), ash content (1.60–2.0%) and gluten strength (14–60 ml) showed marked variations. Gliadin and glutenin banding patterns showed high polymorphism. 65 alleles were detected with 14 SSR markers, giving a mean of 6.77 alleles per locus. The average PIC value was 0.44 and ranged from 0.11 to 0.70. The average genetic distance between pairs of landraces was 0.47 and ranged between 0.11 and 0.72. This study showed that Kunduru landraces maintains high allelic variation. PCoA indicated that eco-geographical variables have a significant effect on SSR diversity as well as morphological traits. Many of the landraces studied are in danger of disappearing from the local farmers' fields; this study demonstrates the importance of maintaining and conserving this precious genetic resources.  相似文献   
33.
鹅观草属三个种的形态变异与核型的研究   总被引:14,自引:2,他引:12  
本文通过对鹅观草属的三个种:鹅观草(Roegneria kamoji Ohwi)、纤毛鹅观草(R. ciliars (Trin.) Nevski)和竖立鹅观草(R. japonensis(Honda)Keng)的形态学比较和核型分析研究了该三个种的系统关系。R. kamoji与R. ciliaris、R. japonensis形态上的差异明显,而后二个种差异甚小,难以进行划分。R. kamoji的核型公式为:2n=6x=42=30m+8sm+4SAT;R. ciliaris为:2n=4x=28=18m+6sm+4SAT;R. japonensis为:2n=4x=28=18m+6sm+4SAT。t-测验的结果表明R. ciliaris与R. japonensis的核型无显著差异。因此笔者认为R. ciliaris和R. japonensis应合并为一种系内的分类群。  相似文献   
34.
新疆多年生小麦族植物染色体数的观察   总被引:6,自引:0,他引:6  
孙根楼  颜济  杨俊良   《广西植物》1990,10(2):143-148
本文对1987年采集于新疆的多年生小麦族(Triticeae Dum. )属种进行了细胞学观察。该地区多年生小麦族各属种的染色体数目变化范围是从2n=14到2n=84,前者主要存在于大麦属(Hordeum)、新麦草属(Psathyrostachys),而后者全部集中于赖草属(Leymus).其中染色体数目为2n=28和2n=42的频率最高,主要存在于鹅冠草属(Roegneria)和披碱草属(Elymus)。Roegneria gobicola, Roegneria kuqaensis, Roegneria tahelacona, Roegneria zhoasuensis的染色体数为首次报道。  相似文献   
35.
The St and E are two important basic genomes in the perennial tribe Triticeae (Poaceae). They exist in many perennial species and are very closely related to the A, B and D genomes of bread wheat (Triticum aestivum L.). Genomic Southern hybridization and genomic in situ hybridization (GISH) were used to analyze the genomic relationships between the two genomes (St and E) and the three basic genomes (A, B and D) of T. aestivum. The semi-quantitative analysis of the Southern hybridization suggested that both St and E genomes are most closely related to the D genome, then the A genome, and relatively distant to the B genome. GISH analysis using St and E genomic DNA as probes further confirmed the conclusion. St and E are the two basic genomes of Thinopyrum ponticum (StStE^eE^bE^x) and Th. intermedium (StE^eE^b), two perennial species successfully used in wheat improvement. Therefore, this paper provides a possible answer as to why most of the spontaneous wheat-Thinopyrum translocations and substitutions usually happen in the D genome, some in the A genome and rarely in the B genome. This would develop further use of alien species for wheat improvement, especially those containing St or E in their genome components.  相似文献   
36.
Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S 3 haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S 3) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB511822–AB511825 and AB511859–AB511862.  相似文献   
37.
小麦族(Triticeae)植物的野外调查、收集通常是以形态学为依据的。为了探讨小麦族植物在野外调查、收集的科学取样策略,本项研究以小麦族具有自花授粉习性的3个中间鹅观草(Roegneria sinica. var. media Keng)居群、每个居群30个单株为材料,对11个形态学性状的多样性进行了分析。结果表明,3个居群的总遗传多样性指数为1.991,遗传多样性主要集中于居群内(91.76%),而居群间的遗传变异(8.24%)相对较小;不同取样梯度下的遗传多样性指数随单株取样数目的增加呈现增大趋势,但当取样数目达到18株时,遗传多样性指数达到最高值。上述结果说明,对于小麦族自花授粉植物野外调查、收集时,应以居群为单位,而且每一居群至少应调查、收集18个单株,才能代表居群的遗传多样性。以形态学为依据的取样策略的建立,对于指导野外调查、收集具有现实意义。  相似文献   
38.
The menadione reductase (MNR), the nicotinamide adenine dinucleotide dehydrogenase (NDH) and diaphorase (DIA) isozymes were studied in the allohexaploid Triticum aestivum cv ”Chinese Spring” and in five diploid Triticeae species. The Mnr1, Ndh3 and Dia1 loci were located on the chromosome arms 3AL, 3BL and 3DL of T. aestivum, respectively. These loci were also located on the 3H chromosome of Hordeum vulgare cv ”Betzes”, the 3L chromosome of Aegilops longissima and the 6RL chromosome arm of Secale cereale cv ”Imperial”. The chromosomal location results together with the segregation studies support a tetrameric behaviour of the MNR1, NDH3 and DIA1 isozymes. The Ndh1 and Dia3 loci were located on homoeologous group 4 showing a monomeric behaviour. The chromosomal locations and linkage data of the Mnr, Ndh and Dia loci suggest that Mnr1=Ndh3=Dia1; Ndh1=Dia3 and Ndh2=Dia2. Received: 3 June 2001 / Accepted: 11 July 2001  相似文献   
39.
The Afa-family sequences in wheat-related species, Triticeae, are tandem repetitive sequences of 340 bp. All the analyzed Triticeae species carried the sequences in their genomes, though the copy numbers varied about 100-fold among the species. The nucleotide fragments amplified by PCR were cloned and sequenced, and their behavior in the evolution of Triticeae was analyzed by the neighbor-joining (NJ) method. The sequences in genomes with many copies of this family clustered at independent branches of the phylogenic tree, whereas the sequences in genomes with a few copies did not. This may suggest that Afa-family sequences had amplified several times in the evolution of Triticeae, each using a limited number of different master copies. In addition, the sequences of the A and B genomes of hexaploid common wheat indicated that the Afa-family sequences had not evolved in a concerted manner between the genomes. Furthermore, the sequences of each chromosome of the D genome of this species indicated that the sequences had amplified on all over the D-genome chromosomes in a short period. Received: 1 September 1997 / Accepted: 19 January 1998  相似文献   
40.
 A collection of 200 wheat (Triticum aestivum L. cv ‘Chinese Spring’) cytogenetic stocks (nullisomic, tetrasomic, nulli-tetrasomic, ditelosomic and deletion lines, addition and substitution stocks from intra- and inter-specific crosses) was utilized to determine the proteins encoded by some of the wheat and barley dehydrin genes, using a western blot procedure. Proteins extracted from seeds were reacted with antibodies that recognize dehydrins in a wide range of plants, including wheat and barley. Proteins encoded by dehydrin loci in chromosome arms 4DS, 5BL and 6AL of ‘Chinese Spring’ wheat were assigned by this method. There was also evidence of a regulatory factor on 5B in the vicinity of the dhn genes, and on 5H in wheat-barley addition lines, that is required for a normal level of expression of seed dehydrins in hexaploid wheat. Further understanding of this putative regulatory factor would be helpful for the interpretation of linkage studies that may relate dehydrin gene expression to phenotypes such as dehydration, salinity or low-temperature tolerance. Received: 27 August 1997 / Accepted: 4 February 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号