首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   25篇
  国内免费   79篇
  2024年   3篇
  2023年   13篇
  2022年   24篇
  2021年   19篇
  2020年   18篇
  2019年   23篇
  2018年   26篇
  2017年   20篇
  2016年   18篇
  2015年   20篇
  2014年   38篇
  2013年   60篇
  2012年   24篇
  2011年   56篇
  2010年   24篇
  2009年   41篇
  2008年   26篇
  2007年   29篇
  2006年   40篇
  2005年   26篇
  2004年   30篇
  2003年   28篇
  2002年   20篇
  2001年   15篇
  2000年   10篇
  1999年   18篇
  1998年   12篇
  1997年   9篇
  1996年   15篇
  1995年   11篇
  1994年   6篇
  1993年   7篇
  1992年   11篇
  1991年   10篇
  1990年   14篇
  1989年   11篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   10篇
  1983年   9篇
  1982年   12篇
  1981年   4篇
  1980年   9篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1974年   5篇
  1973年   2篇
排序方式: 共有861条查询结果,搜索用时 31 毫秒
101.
The presence of trace amounts of metal ions in nonviral vector formulations can significantly affect the stability of lipid/DNA complexes (lipoplexes) during acute freeze-drying. The goal of the present study was to evaluate the generation of reactive oxygen species (ROS) in dried formulations of lipoplexes and in their individual components (lipid or naked DNA). The experiments were conducted in the presence or absence of a transition metal (Fe2+). Lipoplexes and their individual components were formulated in trehalose and subjected to lyophilization and stored for a period of up to 2 months at + 60 °C. Physico-chemical characteristics and biological activity were evaluated at different time intervals. Generation of ROS during storage was determined by adding a fluorescence probe to the formulations prior to freeze-drying. We also monitored the formation of thiobarbituric reactive substances (TBARS). Our results show that ROS and TBARS form during storage in the dried state. Our findings also suggest that degradation is more rapid in the presence of lipid, even in the absence of metal. We also showed that dried naked DNA formulations are more stable without the lipid component. Effective strategies are then needed to minimize the formation and accumulation of oxidative damage of lipoplexes during storage.  相似文献   
102.
酶降解烟叶中细胞壁物质   总被引:21,自引:1,他引:20  
烟叶中以细胞壁物质存在的碳水化合物在燃吸时产生不良影响,在一定条件下向烟叶中施加一定量的纤维素酶和果胶酶,使部分细胞壁物质降解为水溶性糖,烟质得到改善,纤维素酶和果胶酶最佳用量均为每克烟叶30u酶量(活力),最佳作用条件为;烟叶水分25%,作用温度50℃,作用时间4h,且在真空条件下可使细胞壁物质降解更有效,可降解烟叶中细胞壁物质10%左右,烟叶的评吸质量得到明显改善。  相似文献   
103.
Boothroyd  Ian K.G.  Etheredge  M. Kay  Green  John D. 《Hydrobiologia》2002,469(1-3):23-32
Solar ultraviolet radiation both degrades and alters the quality of natural organic matter as well as organic pollutants in surface waters. Still, it is only recently that this indirect influence of photochemical processes on aquatic organisms (e.g. bacteria) has received attention. We experimentally studied the photochemical degradation of three PAHs; anthracene, phenanthrene and naphthalene, in water. Anthracene and phenanthrene were rapidly photodegraded (half-lives of 1 and 20.4 hours, respectively), while the photochemical half-life of naphthalene exceeded 100 hours. Hence photodegradation is most likely a less important removal mechanism for the latter compound. The influence of humic substance additions (0–25 mg C l–1) on degradation rates was also assessed, and while photodegradation of anthracene was not affected by these additions, phenanthrene photodegradation slowed down considerably at the higher humic substance concentrations. These differential responses of anthracene and phenanthrene can at least partially be explained by differences in the spectral absorbance of the two compounds. In contrast, ionic strength did not have any appreciable effect on the estimated photodegradation rates of either compound. The influence of PAHs on growth of aquatic bacteria was assessed in dilution cultures with and without exposure to PAHs and simulated solar UV radiation. Separately, neither PAHs nor simulated solar UV radiation had any effect on bacterial growth. However, when combined, a marked inhibition of bacterial growth could be observed in water obtained from a clearwater lake. This could be due to the formation of toxic photodegradation products such as quinones (detected in our incubations) or other reactive species that affect bacteria negatively. Hence, in addition to influencing the fate and persistence of PAHs in aquatic systems, solar radiation and natural organic matter and regulate the toxicity of these compounds to indigenous micro-organisms.  相似文献   
104.
Forest harvesting alters the organic matter cycle by changing litter inputs and the decomposition regime. We hypothesized that these changes would result in differences in organic matter chemistry between clear-cut and uncut watershed ecosystems. We studied the chemistry of soil organic matter (SOM), and dissolved organic carbon (DOC) in soil solutions and stream samples in clear-cut and uncut sites at the Hubbard Brook Experimental Forest in New Hampshire using DOC fractionation techniques and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy.Alkyl-C (aliphatic compounds) and O-alkyl-C (carbohydrates) were the largest C fractions in soil and dissolved organic matter at Hubbard Brook. Alkyl-C ranged from 29–48% of soil C, 25–42% of soil solution C, and 22–42% of streamwater DOC. Carbohydrates comprised 32–49%, 36–43%, and 29–60% of C in soils, solutions, and streamwater, respectively. In both soils and soil solutions, the carbohydrate fraction decreased with increasing soil depth, while the aromaticity of organic matter increased with depth. There were no significant differences in the structural chemistry of SOM between clear-cut and uncut watersheds.The aromatic-C fractions in soil solutions at the clear-cut site ranged from 12–16%, approximately 40% greater than at the uncut site (8.5–11%). Thus, clear-cutting has resulted in the leaching of more highly decomposed organic matter, and depletion of more aliphatic compounds in the soluble organic pool. Because DOC fluxes are small compared to the SOM pool, large differences in soil solution chemistry do not substantially alter the overall composition of SOM. While the organic chemistry of stream DOC varied greatly among 3 sampling dates, there were no obvious clear-cutting effects. Thus, temporal variations in flowpaths and/or in-stream processes appear to be more important than disturbance in regulating the organic carbon chemistry of these streams.  相似文献   
105.
Cesco  S.  Nikolic  M.  Römheld  V.  Varanini  Z.  Pinton  R. 《Plant and Soil》2002,241(1):121-128
The capability of cucumber (Cucumis sativus L., cv. Serpente cinese), a Strategy I plant and barley (Hordeum vulgaris L., cv. Europa), a Strategy II plant to use Fe complexed by a water-soluble humic fraction (WEHS) extracted from a peat, was studied. Uptake of 59Fe from 59Fe-WEHS by cucumber plants was higher at pH 6.0 than at pH 7.5. Roots of intact cucumber plants were able to reduce the FeIII-WEHS complex either at pH 6.0 or 7.5, rates being higher in the assay medium buffered at pH 6.0. After supply of 59Fe-WEHS, a large pool of root extraplasmatic 59Fe was formed, which could be used to a large extent by Fe-deficient plants, particularly under acidic conditions. Uptake of 59Fe from 59Fe-WEHS by Fe-sufficient and Fe-deficient barley plants was examined during periods of high (morning) and low (evening) PS release. Uptake paralleled the diurnal rhythm of PS release. Furthermore, 59Fe uptake was strongly enhanced by addition of PS to the uptake solution in both Fe-sufficient and Fe-deficient plants. High amount of root extraplasmatic 59Fe was formed upon supply of Fe-WEHS, particularly in the evening experiment. Fe-deficient barley plants were able to utilize Fe from the root extraplasmatic pool, conceivably as a result of high rates of PS release. The results of the present work together with previous observations indicate that cucumber plants (Strategy I) utilize Fe complexed to WEHS, presumably via reduction of FeIII-WEHS by the plasma membrane-bound reductase, while barley plants (Strategy II) use an indirect mechanism involving ligand exchange between WEHS and PS.  相似文献   
106.
Iron enriched biosolids (FEB) from water treatment facilities are being used as an alternative to synthetic chelates in order to improve Fe uptake. The impact of this type of products on iron nutrition is not fully understood. Plant response depends on FEB composition, soil and climatic conditions and crop response. In order to study the effectiveness of FEB as fertilisers, two field experiments have been carried out. Two different commercial formulations of FEB (unmodified u-FEB and modified m-FEB) produced as a by-product of a drinking water treatment facility in Tampa (Florida, USA) were used. An orange tree (Citrus sinensis, cv. Navelina) and a peach tree (Prunus persica cv. Sudanell) field experiments took place in different locations in Spain. Macro and micronutrients were evaluated to assess mineral status of orange and peach leaf samples. Yield and fruit size were also determined. Despite the large amount of Fe bound by the organic matter on FEB, these products were less effective than synthetic chelates to improve iron uptake. No differences were found in orange yield or size. Results show that the ferric treatments improve fruit calibre, but not yield in peaches.  相似文献   
107.
Hormonal factors controlling the initiation and development of lateral roots   总被引:10,自引:0,他引:10  
As the first part of a comprehensive study of the hormonal control of lateral root initiation and development, the effect of surgical treatments such as removal of the root tip, one or more cotyledons, the young epicotyl, or combination of these treatments, on the induction and emergence of lateral roots on the primary root of pea seedlings has been examined. Results show that removal of the root tip leads to a rapid but transitory increase in the number of lateral primordia, the largest number arising in the most apical segment of decapitated roots suggesting the accumulation of acropetally moving promoter substances in this region. The cotyledons appear to be the main source of promoter substances for both the induction and emergence of lateral roots, although one or more promoters also appear to be produced in the epicotyl. The data further indicate that the root tip is possibly the source of a substance which moves basipetally and interacts with acropetally moving promoters to regulate the zone for lateral primordia initiation; the root tip also appears to be the source of a powerful inhibitor of lateral root emergence.  相似文献   
108.
The purpose of this work was to investigate the protective effect of five essential oils (EOs); Rosmarinus officinalis, Thymus vulgaris, Origanum compactum Benth., Eucalyptus globulus Labill. and Ocimum basilicum L.; against oxidative stress induced by hydrogen peroxide in Saccharomyces cerevisiae. The chemical composition of the EOs was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The in vitro antioxidant activity was evaluated and the protective effect of EOs was investigated. Yeast cells were pretreated with different concentrations of EOs (6.25–25 µg/ml) for an hour then incubated with H2O2 (2 mM) for an additional hour. Cell viability, antioxidants (Catalase, Superoxide dismutase and Glutathione reductase) and metabolic (Succinate dehydrogenase) enzymes, as well as the level of lipid peroxidation (LPO) and protein carbonyl content (PCO) were evaluated. The chemical composition of EOs has shown the difference qualitatively and quantitatively. Indeed, O. compactum mainly contained Carvacrol, O. basilicum was mainly composed of Linalool, T. vulgaris was rich in thymol, R. officinalis had high α-Pinene amount and for E. globulus, eucalyptol was the major compound. The EOs of basil, oregano and thyme were found to possess the highest amount of total phenolic compounds. Moreover, they have shown the best protective effect on yeast cells against oxidative stress induced by H2O2. In addition, in a dose dependent manner of EOs in yeast medium, treated cells had lower levels of LPO, lower antioxidant and metabolic enzymes activity than cells exposed to H2O2 only. The cell viability was also improved. It seems that the studied EOs are efficient natural antioxidants, which can be exploited to protect against damages and serious diseases related to oxidative stress.  相似文献   
109.
Cadmium extraction, sorption, and immobilization seem to be the effective mechanisms in detoxification of Cd-contaminated soil. Humic substances present in soils may play an important role both in controlling the negative effects of pollution with Cd and in stabilizing soil enzymes. In this context, we have compared the effects of humic substances on soil protease activities in the presence and absence of Cd in forest and cultivated field soil samples. The samples were taken from surface soils of Andosols in a single upland area of the Kanto district in Japan. Humic substances extracted from the two soils showed differences in elemental composition, the degree of condensation of aromatic groups, and the proportions of major functional groups. Compared with the control soil samples, those with added humic substances showed a significant increase in protease activities, even in the presence of Cd (10 and 50 mg Cd kg?1 soil). However, the addition of Cd decreased the protease activities, protein contents, and soil pH in both soil samples at each of the two levels of humic substance fortification (+5% and +10%). Moreover, protease activities showed significant negative correlation with exchangeable Cd, but adding humic substances did not lead to a reduction in either sample. Thus, although the addition of humic substances increased and stabilized protease activities, it did not lead to a clear reversal of enzyme inhibition by Cd. The obtained results indicate that in both soil samples the humic substances used in this study did not have sufficient affinity to adsorb Cd, and the impact on enzyme activities depends on the difference in chemical characteristics of the added organic matter, as suggested by the difference in enhancement of protease activities between forest and cultivated field soil samples.  相似文献   
110.
《Process Biochemistry》2014,49(12):2241-2248
Membrane bioreactors (MBR) technology for wastewater offers many advantages over conventional technologies such as high effluent quality, less footprint and others. The main disadvantage of membrane bioreactors (MBR) is related to membrane fouling, which is mainly caused by extracellular polymeric substance (EPS) and soluble microbial products (SMP). This research studied EPS and SMP dynamics at different heights of a submerged anaerobic membrane bioreactor (SAMBR). The SAMBR was operated under two organic loading rates (OLR) (0.79 and 1.56 kg/m3 d) and was fed with synthetic wastewater with glucose as the carbon source. The results showed percentages of chemical oxygen demand (COD) removal above 95% and the highest COD removal rates were observed at the bottom of the reactor (>83%) for both OLR. The EPS showed a stratification with highest quantities in the supernatant. For the SMP the highest concentration was in the bottom of SAMBR where utilization predominated associated products whereas in the SAMBR supernatant predominated biomass associated products. The OLR change led to a significant increase in SMP accumulation but not in EPS. These facts showed that EPS and SMP dynamic in the SAMBR seemed to be mainly influenced by biological activity, total suspended solids concentration and substrate composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号