首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lateral root formation is profoundly affected by auxins. Here we present data which indicate that light influences the formation of indole-3-acetic acid (IAA) in germinating Arabidopsis seedlings. IAA transported from the developing leaves to the root system is detectable as a short-lived pulse in the roots and is required for the emergence of the lateral root primordia (LRP) during early seedling development. LRP emergence is inhibited by the removal of apical tissues prior to detection of the IAA pulse in the root, but this treatment has minimal effects on LRP initiation. Our results identify the first developing true leaves as the most likely source for the IAA required for the first emergence of the LRP, as removal of cotyledons has only a minor effect on LRP emergence in contrast to removal of the leaves. A basipetal IAA concentration gradient with high levels of IAA in the root tip appears to control LRP initiation, in contrast to their emergence. A significant increase in the ability of the root system to synthesize IAA is observed 10 days after germination, and this in turn is reflected in the reduced dependence of the lateral root emergence on aerial tissue-derived auxin at this stage. We propose a model for lateral root formation during early seedling development that can be divided into two phases: (i) an LRP initiation phase dependent on a root tip-localized IAA source, and (ii) an LRP emergence phase dependent on leaf-derived IAA up to 10 days after germination.  相似文献   

2.
The effect of.distinct regions of the root on the initiationof lateral root primordia and the emergence of lateral rootshas been studied, using segments of roots from sterile 2-daygerminated pea seedlings. It is shown that the removal of the basal region causes a decreasein the number of primordia formed in the remainder of the root.On the other hand, the removal of the apical region causes alarger number of primordia to be formed in the remaining tissuethan in the corresponding tissue of roots where the apical regionis retained. It is suggested that a factor or a complex of factorsinvolved in primordium initiation is translocated from the oldertissue towards the potential site of primordium initiation inthe young tissue which has just completed extension growth. The removal of the apical region of the root is also shown tostimulate lateral root emergence. It is suggested that a factoror complex of factors involved in the development of the primordiasubsequent to initiation moves within the root in a similarmanner to the factor or factors involved in initiation.  相似文献   

3.
To clarify the participation of indole-3-acetic acid (IAA) originatingfrom the shoot in root growth regulation and the mechanism ofIAA translocation from shoot to root, the movement of 14C-IAAwhich was applied to the epicotyl or the cotyledon of Viciafaba seedlings was investigated. The radioactivity of IAA appliedto the cotyledon moved faster to the root tip than that appliedto the epicotyl. On the basis of the effect of 2,3,5-triiodobenzoic acid on IAAmovement, a comparison with 14C-glucose movement and autoradiographicexamination, the nature of IAA movement was concluded to bepolar transport from the epicotyl to the basal part of the roots,while IAA movement from the epicotyl to the cotyledon, fromthe basal part of roots to the apical part, and from the cotyledonto the epicotyl and to the root took place in the phloem. Theradioactivity from 14C-IAA applied to the cotyledon accumulatedin lateral root primordia and vascular bundles. These factssuggest that IAA produced in cotyledons may participate in theregulation of Vicia root development. (Received December 21, 1979; )  相似文献   

4.
The decapitated primary root of 3-day-old Alaska pea seedlings has been used as a test system to determine the activities on lateral root formation of six auxins, six cytokinins and several other naturally-occurring compounds. Their effects were assessed on (1) the initiation of lateral root primordia, (2) the emergence of visible lateral roots, and (3) the elongation of these laterals. All the auxins, at the optimum concentration of 10-4M, promoted the initiation of lateral root primordia, and all except 3-indolylpropionic acid inhibited the elongation of the resulting lateral roots. Their effects on the emergence of laterals were small and varied. All the cytokinins, at 10-6M and above, inhibited both the initiation and the emergence of lateral roots, zeatin being the most powerful inhibitor. The emergence process was about twice as sensitive as the initiation of primordia to the presence of cytokinins. The cytokinin ribosides were generally less active than the free bases. Abscisic acid and xanthoxin inhibited both emergence and elongation, the concentration for 50% decrease of emergence being about 10-4M. Gibberellic acid had little clear effect on any of the three criteria. Nicotinic acid and thiamine at 10-3M promoted both the initiation of primordia and their emergence: pyridoxal phosphate stimulated both emergence and elongation but did not influence the initiation of primordia. Adenine and guanine had little effect but decreased root elongation some 25%. The strong inhibiting effect of the cytokinins may well be the basis for the marked inhibition exerted by the root-tip on lateral root formation, while the promoting effects of auxins may explain the previously observed promotion of lateral root formation by the young shoot and cotyledons.  相似文献   

5.
The initiation of lateral root primordia and their subsequentemergence as secondary roots have been examined in attachedand excised roots of Zea mays grown in the presence or absenceof indol-3-yl acetic acid (IAA). Exposure to IAA enhanced anlageinception in both batches of roots. In the attached roots, theIAA-induced stimulation of primordium initiation was followedby a similar increase in lateral emergence. IAA treatment, however,had no effect on the number of laterals produced, per centimetreof root, in the excised primaries. Thus, exposure to IAA didnot directly enhance lateral emergence in the attached rootsnor did it stimulate such emergence in the excised ones. Nocorrelation was found between proliferative activity in themeristem at the apex of the primary or the rate of root elongationon the one hand, and either the number of primordia initiated,or the number of laterals produced, per centimetre of primary,on the other. Zea mays, maize, root, primordium, lateral, indol-3-yl acetic acid, meristematic activity  相似文献   

6.
The effects of white light and decapitation on the initiation and subsequent emergence and elongation of lateral roots of apical maize (Zea mays L. cv LG 11) root segments have been examined. The formation of lateral root primordium was inhibited by the white light. This inhibition did not depend upon the presence of the primary root tip. However, root decapitation induced a shift of the site of appearance of the most apical primordium towards the root apex, and a strong disturbance of the distribution pattern of primordium volumes along the root axis. White light had a significant effect neither on the distribution pattern of primordium volumes, nor on the period of primordium development (time interval required for the smallest detectable primordia to grow out as secondary roots). Thus, considering the rooting initiation and emergence, the light effect was restricted to the initiation phase only. Moreover, white light reduced lateral root elongation as well as primary root growth.  相似文献   

7.
Localization of the 49-kDa apyrase (ATP diphosphohydrolase, EC3.6.1.5; DDBJ/EMBL/GenBank BAB40230) was investigated during early stages of germination of pea (Pisum sativum L. var. Alaska) at the organ, tissue, cellular, and sub-cellular level using light-microscopical immunohistochemistry. Whole mount tissues were immuno-reacted with anti-APY1 serum, pre-immune serum or anti-actin antibody for control. Antigen to the anti-APY1 serum was not detected until 16 h after sowing (26 h after start of imbibition), when the antigen was detected throughout the tissue, especially in the epidermis and cortex. At 35 h after sowing, the younger regions including the root tip and the tip of the stele were more strongly stained than the control. Both, epidermal and cortical cells of the epicotyl and root tip were stained. The stain was mainly localized in the cytoplasm and around nuclei in the apical meristem and the root tip, while vacuoles and cell walls were not stained. At 62 h, there was major staining in the plumule, hook, and elongating regions of the epicotyl and in the region between cotyledons and the epicotyl. After 84 h, lateral root primordia were stained. The pre-immune serum showed virtually no staining while the anti-actin antibody reacted solely with the cytoplasm. Since the antigen to the anti-APY1 serum was primarily found in the cytoplasm and around nuclei in elongating and differentiating tissues and labeling declined in mature tissues, it is suggested that apyrases may play a role in growth and development of tissues, for example, lateral roots.  相似文献   

8.
The role of assimilates in lateral root development was studied in Pinus pinea seedlings grown in a nutrient solution. Seedlings were treated with 14CO2 for 2 h following removal of the tap root tip at various times prior to the application of 14CO2 or removal of a different number of cotyledons at one time. In seedlings with intact root systems most of the radioactivity accumulated in the lower section of the root containing the tap root apex. When the tap root tip was removed, the pattern of radioactivity accumulation along the root was affected by the presence and the stage of lateral root development. Removing the tap root tip of young seedlings (with no lateral roots) resulted in an almost equal distribution of radioactivity along the root. About 50% of the total radioactivity was found in the section showing the highest lateral root growth. Removing the tap root tip of mature seedlings (with lateral roots in the upper section) resulted in an immediate increase in the radioactivity accumulation in the upper section. When lateral roots appeared in the middle section, the pattern of radioactivity distribution was similar to that found in root decapitated young seedlings. Removal of cotyledons of mature seedlings somewhat increased the transport of radioactivity to the lower root section at the expense of the radioactivity in the lateral roots of the upper section. The present study suggests that competition within the root system between the tap root apex and the lateral roots may play an important role in determining the morphology of the root system.  相似文献   

9.
The present paper reports results of experiments to develop a system for studying adventitious root initiation in cuttings derived from seedlings. Hypocotyl cuttings of 2-week-old eastern white pine (Pinus strobus L.) seedlings were treated for 5 min with 0, 100, 200, 300, 400, 500 or 600 mg l?1 (0, 0.54, 1.07, 1.61, 2.15, 2.69 or 3.22 mM) 1-naphthaleneacetic acid (NAA) to determine the effect on root initiation. The number of root primordia per cutting was correlated with NAA concentration and the square of NAA concentration. Thus, the number increased from less than one per cutting in the 0 NAA treatment to approximately 40 per cutting at 300 mg l-1 NAA, above which no substantial further increase was observed. The larger number of root primordia formed in response to increasing concentrations of NAA was due to the formation of primordia over a larger proportion of the hypocotyls. Histological analysis of the timing of root primordium formation in hypocotyl cuttings revealed three discernible stages. Progression through these stages was relatively synchronous among NAA-treated hypocotyl cuttings and within a given cutting, but variation was observed in the portion of different cuttings undergoing root formation. Control-treated hypocotyl cuttings formed root primordia at lower frequencies and more slowly than NAA-treated cuttings, with fewer primordia per cutting. Epicotyl cuttings from 11-week-old seedlings also formed adventitious roots, but more slowly than hypocotyl cuttings. NAA treatment of epicotyl cuttings caused more rapid root initiation and also affected the origin of adventitious roots in comparison with nontreated cuttings. NAA-treated epicotyl cuttings formed roots in a manner analogous to that of the hypocotyl cuttings, directly from preformed vascular tissue, while control-treated epicotyl cuttings first formed a wound or callus tissue and subsequently differentiated root primordia within that tissue. This system of inducing adventitious roots in pine stem cuttings lends itself to studying the molecular and biochemical steps that occur during root initiation and development.  相似文献   

10.
The spacing of lateral root primordia in the primary root of Pisum sativum (cv. Alaska) seedlings is influenced by both predetermined lateral root initiation sites in the embryonic radicle and by factors present during seedling growth. When pea seeds were germinated in the presence of the mitotic inhibitor, colchicine, the triarch radicle produced three ranks of primordiomorphs indicating sites of embryonic lateral root primordia. The number of primordiomorphs was not the same along the three xylem strands in the radicle. Normally germinated seedling roots (5 days old) also showed a different number of lateral root primordia associated with the three strands. In both cases, the strand with the greatest number of primordia (or primordiomorphs) was associated with a cotyledonary trace. This indicated a possible role for the cotyledons in setting the pattern of lateral root distribution during radicle development. The spacing of lateral root primordia could be altered by the application of growth regulators. Seedling root tips (2 mm) were removed (? rt) and replaced with indoleacetic acid (+IAA), and in some instances seedlings were also treated with the auxin transport inhibitor, 3,3a-dihydro-2-(p-methoxyphenyl)-8H-pyrazolo[5, 1-α]isoindol-8-one (+DPX). In the growth regulator treatments, primary root elongation was inhibited, a greater number of lateral root primordia were initiated compared to controls, and the spacing intervals between primordia were greatly reduced. The — rt, +IAA, +DPX-treatment resulted in the closest possible spacing intervals (av. 0.4 ? 0.6 mm), but resulted in fused or fasciated laterals. The — rt, + IAA-treatment produced the shortest spacing intervals which resulted in “normal” lateral roots (0.8 ? 1.1 mm).  相似文献   

11.
Root branching patterns in intact and decapitated flax (Linum usitatissimumL.) roots were compared. The number of initiated primordia in the control and decapitated roots was similar, but decapitated roots produced an increased number of lateral roots owing to an increase in the number of primordia developed into the laterals. It is suggested that the apical meristem influences lateral root development only at the stage of root emergence from the parent root.  相似文献   

12.
The pattern of lateral root initiation in seminal roots of wheat(Triticum aestivumL. cv. Alexandria) and the location, scaleand time-course for adjustments in initiation were studied afterchanges in C and N supply. Macroscopically visible primordiaappeared in a non-acropetal sequence with the frequency (numberper unit length) increasing with distance behind the main rootapex to a maximum at 40–50 mm behind the root tip. Pruningthe root system to a single seminal axis increased the primordiafrequency by 23% within 15 h. After longer periods, the effectof root-pruning was greater. The enhanced primordia frequencywas first observed in tissue located 0–10 mm behind theapex at the start of treatment. Feeding glucose (50 mM) alsoincreased primordia frequency within 15 h, but to a greaterextent, and here additional primordia were initiated in tissuelocated 0–10and10–20 mm behind the apex at the startof treatment. Withdrawing NO3-from one part of a split-rootsystem, whilst maintaining the supply to the other, reducedprimordia frequency in the non-fed roots and, in some cases,a compensatory increase in the NO3--fed roots was observed.The location and scale of the adjustments were similar to thosefound with root-pruning and glucose-feeding, but were slightlyslower to appear. In spite of some differences in detail, therewas a broad similarity in site, scale and time-course for adjustmentsin lateral root initiation with these treatments, which is consistentwith the operation of a common mechanism. Whenever an increasein primordia frequency was observed, it was associated withan increase in the ethanol-soluble sugar content of the tissue.However, the reduction in frequency in NO3--deprived roots wasalso accompanied by an increase in sugar content. There wasno consistent relationship between total N content of the tissueand primordia frequency, but there was between primordia frequencyand the rate of net NO3-uptake. The possible mechanisms controllinglateral root initiation are discussed. Compensatory growth; correlative growth; glucose; initiation; lateral root; nitrate; primordium; split-root; Triticum aestivum; wheat  相似文献   

13.
Analysis of transgenic tobacco plants containing a tobacco hydroxyproline-rich glycoprotein HRGPnt3 gene promoter-β-glucuronidase (GUS) gene fusion (HRGPnt3-uidA) showed that this promoter is active not only in the early stages of initiation of lateral roots as previously described, but also in the initiation of adventitious roots, with similar selective expression in a subset of pericycle cells. HRGPnt3 is also induced during initiation of hairy roots following transformation by Agrobacterium rhizogenes. The auxin indole acetic acid (IAA) induces an increase in the number of characteristic discrete sites of HRGP-nt3 expression. It is shown that these sites are destined to form new root primordia from pericycle cells of both adventitious and main roots. Dose-dependent induction of root meristems by auxin overcomes the limitations of this naturally stochastic process and makes lateral root initiation amenable to biochemical analysis. Quiescent pericycle cells, which are developmentally arrested in the G2 phase of the cell cycle, rapidly progress into M phase upon mitogenic stimulation. Colchicine and nocodazole, which block completion of mitosis, inhibited the activation of the HRGPnt3 promoter but did not block auxin induction of parA, a marker for de-differentiation in leaf mesophyll cell-derived protoplasts. Hydroxyurea, which inhibits cell-cycle progression at the G1/S-phase transition and also blocks lateral root initiation, did not inhibit HRGPnt3 induction. Thus, HRGPnt3 induction precedes completion of the first cell division during primordium formation, and is one of the initial steps in a sequential program of gene expression activated upon stimulation of cell division for the development of a new meristem during lateral root initiation.  相似文献   

14.
The removal of four of five roots of 7–8-day-old wheat plants resulted in the activation of lateral root growth and the initiation of lateral root primordia on the remained root as compared to the main root of intact plants. The extent of this growth response depended on placing cut surface above or beneath the surface of the nutrient solution. The measurement of the IAA and cytokinin contents showed accumulation of these hormones in the root of experimental plants as compared to the main root of intact plants. IAA accumulation was correlated with the number of lateral roots and their primordia. The analysis of hormonal balance and their transport from the shoot to the root permits discussing the involvement of these hormones and their interaction in the control of root growth at the stages of both primordium initiation and development and lateral root elongation.  相似文献   

15.
We have studied the role of endogenous auxin on adventitious rooting in hypocotyls of derooted sunflower (Helianthus annuus L. var. Dahlgren 131) seedlings. Endogenous free and conjugated indole-3-acetic acid (IAA) were measured in three segments of hypocotyls of equal length (apical, middle, basal) by using gas chromatography-mass spectrometry with [13C6]-IAA as an internal standard. At the time original roots were excised (0 h), the free IAA level in the hypocotyls showed an acropetally decreasing gradient, but conjugated IAA level increased acropetally; i.e. free to total IAA ratio was highest in the basal portion of hypocotyls. The basal portion is the region where most of root primordia were found. Some primordia were seen in this region within 24 h after the roots were excised. The quantity of free IAA in the middle portion of the hypocotyl increased up to 15 h after excision and then decreased. In this middle region there were fewer root primordia, and they could not be seen until 72 h. In the apical portion the amount of free IAA steadily increased and no root primordia were seen by 72 h. Surgical removal of various parts of the hypocotyl tissues caused adventitious root formation in the hypocotyl regions where basipetally transported IAA could accumulate. Reduction in the basipetal flow of auxin by N-1-naphthylphthalamic acid and 2,3,5-tri-iodobenzoic acid resulted in fewer adventitious roots. The fewest root primordia were seen if the major sources of endogenous auxin were removed by decapitation of the cotyledons and apical bud. Exogenous auxins promoted rooting and were able to completely overcome the inhibitory effect of 2,3,5-tri-iodobenzoic acid. Exogenous auxins were only partially able to overcome the inhibitory effect of decapitation. We conclude that in sunflower hypocotyls endogenously produced auxin is necessary for adventitious root formation. The higher concentrations of auxin in the basal portion may be partially responsible for that portion of the hypocotyl producing the greatest number of primordia. In addition to auxins, other factors such as wound ethylene and lowered cytokinin levels caused by excision of the original root system cuttings must also be important.  相似文献   

16.
17.
MACLEOD  R. D. 《Annals of botany》1976,40(3):551-562
Lateral root primordia in i are first initiated 2–3 daysfollowing the onset of germination, after which they take 5.17–6.35days to complete their development and emerge as lateral roots.Variation in the amount of time elapsing between primordiuminitiation and emergence as a lateral is probably a reflectionof the cell number attained by any one primordium at the timeof emergence. The number of primordia produced per cm of primaryroot growth (5.35–6.65) was not affected by variationin the rate of root elongation, although the number of primordiaproduced each day increased with increase in the rate of rootgrowth. In colchicine-treated roots, the amount of time between primordiuminitiation in the C-tumour and the subsequent emergence of alateral (5.43–6.43 days) was similar to the value obtainedin control roots. Primordia which were present at the time ofcolchicine treatment responded to treatment in a number of differentways, depending on the stage of development reached. Primordiain the first 2.66 days of their development die following treatment;those between 2.66 and 3.69 days old have their developmentinhibited but stay alive; primordia which have been developingfor 3.69–4.91 days following initiation grow out as straightlaterals, while those between 4.91 and 5.77 days old form C-tumoursand emerge as inhibited laterals.  相似文献   

18.
The initiation and development of root primordia in detachedcotyledons of Sinapis alba (white mustard) and Raphanus sativus(radish) are studied, together with the inhibitory effects ofsucrose and mineral nutrients on these processes. Root primordium initiation on petioles of excised mustard cotyledonscultured in petridishes in water commenced after 3 days andwas completed after 5 days in culture, by which time a numberof the primordia had extended and emerged from the petiole.Both sucrose and mineral nutrient solution had an inhibitoryeffect which was most marked when the cotyledonswere culturedin the solution from the time of excision. The total numberof primordia initiated, their rate of development, and the finaltotal number of emerged roots were all reduced. The later thetime of transfer from water either to sucrose or to nutrient,the less marked the inhibition. Indeed, nutrient solution enhancedroot growth in mustard when cotyledons were transferred after5 days in water when root emergence had just commenced. The effects of sucrose and nutrients in relation to applicationbefore and after initial meristem formation has taken placeare discussed, together with the ways in which these two solutionsmay exert their effect on root initiation and development.  相似文献   

19.
BACKGROUND AND AIMS: The basic regulatory mechanisms that control lateral root (LR) initiation are still poorly understood. An attempt is made to characterize the pattern and timing of LR initiation, to define a developmental window in which LR initiation takes place and to address the question of whether LR initiation is predictable. METHODS: The spatial patterning of LRs and LR primordia (LRPs) on cleared root preparations were characterized. New measures of LR and LRP densities (number of LRs and/or LRPs divided by the length of the root portions where they are present) were introduced and illustrate the shortcomings of the more customarily used measure through a comparative analysis of the mutant aux1-7. The enhancer trap line J0121 was used to monitor LR initiation in time-lapse experiments and a plasmolysis-based method was developed to determine the number of pericycle cells between successive LRPs. KEY RESULTS: LRP initiation occurred strictly acropetally and no de novo initiation events were found between already developed LRs or LRPs. However, LRPs did not become LRs in a similar pattern. The longitudinal spacing of lateral organs was variable and the distance between lateral organs was proportional to the number of cells and the time between initiations of successive LRPs. There was a strong tendency towards alternation in LR initiation between the two pericycle cell files adjacent to the protoxylem poles. LR density increased with time due to the emergence of slowly developing LRPs and appears to be unique for individual Arabidopsis accessions. CONCLUSIONS: In Arabidopsis there is a narrow developmental window for LR initiation, and no specific cell-count or distance-measuring mechanisms have been found that determine the site of successive initiation events. Nevertheless, the branching density and lateral organ density (density of LRs and LRPs) are accession-specific, and based on the latter density the average distance between successive LRs can be predicted.  相似文献   

20.
Sites and regulation of auxin biosynthesis in Arabidopsis roots   总被引:1,自引:0,他引:1       下载免费PDF全文
Auxin has been shown to be important for many aspects of root development, including initiation and emergence of lateral roots, patterning of the root apical meristem, gravitropism, and root elongation. Auxin biosynthesis occurs in both aerial portions of the plant and in roots; thus, the auxin required for root development could come from either source, or both. To monitor putative internal sites of auxin synthesis in the root, a method for measuring indole-3-acetic acid (IAA) biosynthesis with tissue resolution was developed. We monitored IAA synthesis in 0.5- to 2-mm sections of Arabidopsis thaliana roots and were able to identify an important auxin source in the meristematic region of the primary root tip as well as in the tips of emerged lateral roots. Lower but significant synthesis capacity was observed in tissues upward from the tip, showing that the root contains multiple auxin sources. Root-localized IAA synthesis was diminished in a cyp79B2 cyp79B3 double knockout, suggesting an important role for Trp-dependent IAA synthesis pathways in the root. We present a model for how the primary root is supplied with auxin during early seedling development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号