首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2346篇
  免费   226篇
  国内免费   56篇
  2023年   61篇
  2022年   56篇
  2021年   71篇
  2020年   109篇
  2019年   155篇
  2018年   100篇
  2017年   79篇
  2016年   82篇
  2015年   105篇
  2014年   168篇
  2013年   212篇
  2012年   122篇
  2011年   141篇
  2010年   116篇
  2009年   94篇
  2008年   102篇
  2007年   74篇
  2006年   81篇
  2005年   53篇
  2004年   84篇
  2003年   41篇
  2002年   58篇
  2001年   50篇
  2000年   29篇
  1999年   21篇
  1998年   21篇
  1997年   19篇
  1996年   20篇
  1995年   26篇
  1994年   29篇
  1993年   26篇
  1992年   25篇
  1991年   19篇
  1990年   14篇
  1989年   13篇
  1988年   13篇
  1987年   13篇
  1986年   5篇
  1985年   11篇
  1984年   8篇
  1983年   9篇
  1982年   12篇
  1981年   14篇
  1980年   8篇
  1979年   11篇
  1976年   10篇
  1975年   6篇
  1974年   5篇
  1973年   6篇
  1970年   4篇
排序方式: 共有2628条查询结果,搜索用时 31 毫秒
991.
This study reports on the inhibitory concentration of 59 commercial essential oils recommended for dermatological conditions, and identifies putative compounds responsible for antimicrobial activity. Essential oils were investigated for antimicrobial activity using minimum inhibitory concentration assays. Ten essential oils were identified as having superior antimicrobial activity. The essential oil compositions were determined using gas chromatography coupled to mass spectrometry and the data analysed with the antimicrobial activity using multivariate tools. Orthogonal projections to latent structures models were created for seven of the pathogens. Eugenol was identified as the main biomarker responsible for antimicrobial activity in the majority of the essential oils. The essential oils mostly displayed noteworthy antimicrobial activity, with five oils displaying broad‐spectrum activity against the 13 tested micro‐organisms. The antimicrobial efficacies of the essential oils highlight their potential in treating dermatological infections and through chemometric modelling, bioactive volatiles have been identified.  相似文献   
992.
993.
目的:研究磷酸甘油酸酯激酶1(PGK1)对BRAFV600E突变型恶性黑色素瘤(MM)对Vemurafenib (Zelboraf®)敏感性的影响及其机制。方法:采用分子生物学、细胞生物学、药理学相关实验方法(MTT、Western blot、FCM、Colongenic)探讨:①PGK1以及Vemurafenib对MM细胞的存活增殖能力的影响;②通过siPGK1基因增加Vemurafenib药敏感性的机制。结果:①沉默PGK1基因后再给以BRAFV600E选择性抑制剂Vemurfenib,MM细胞系的存活率明显下降,并呈一定的剂量依赖性;②siPGK1增加MM细胞对Vemurafenib的药物敏感性与激活凋亡信号通路有关。结论:siPGK1通过激活凋亡信号通路增加MM细胞对Vemurafenib的药物敏感性,从而抑制细胞的存活和增殖能力。  相似文献   
994.
Mesenchymal stem cells (MSCs) inhibit the proliferation or activation of lymphocytes, and their inhibitory effects do not require human leukocyte antigen (HLA)-matching because MSCs express low levels of HLA molecules. Therefore, MSCs may be able to regulate immune responses. In this study, we determined whether MSCs could inhibit psoriasis-like skin inflammation in mice. After induction of psoriasis-like skin inflammation using intradermal injection of IL-23 or topical application of imiquimod with or without treatment with MSC, mouse skins were collected, and H&E staining and real-time PCR were performed. IL-23-induced skin inflammation was inhibited when MSCs were injected on day ?1 and day 7. The expression of proinflammatory cytokines such as IL-6, IL-17, and TNF-α was inhibited by MSC injection, and the expression of chemokines such as CCL17, CCL20, and CCL27 was also decreased in mouse skin. We also determined whether MSCs could not only prevent but also treat psoriasis-like skin inflammation in mice. Furthermore, in vitro experiments also showed anti-inflammatory effects of MSCs. Dendritic cells which are co-cultured with MSCs suppressed CD4+ T cell activation and differentiation, which are important for the pathogenesis of psoriasis. These results suggest that MSCs could be useful for treating psoriasis.  相似文献   
995.
The purpose of this study was to determine the metastatic melanoma imaging property of 99mTc(EDDA)-HYNIC-Aoc-Nle-CycMSHhex {hydrazinonicotinamide-8-aminooctanoic acid-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2}. HYNIC-Aoc-Nle-CycMSHhex was synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The IC50 value of HYNIC-Aoc-Nle-CycMSHhex was 0.78?±?0.13?nM for B16/F10 melanoma cells. 99mTc(EDDA)-HYNIC-Aoc-Nle-CycMSHhex displayed significantly higher uptake (14.26?±?2.74 and 10.45?±?2.31%?ID/g) in B16/F10 metastatic melanoma-bearing lung than that in normal lung (0.90?±?0.15 and 0.53?±?0.14%?ID/g) at 2 and 4?h post-injection, respectively. B16/F10 pulmonary metastatic melanoma lesions were clearly visualized by SPECT/CT using 99mTc(EDDA)-HYNIC-Aoc-Nle-CycMSHhex as an imaging probe at 2?h post-injection, underscoring its potential as an imaging probe for metastatic melanoma detection.  相似文献   
996.
We have disclosed our effort to develop caffeic acid derivatives as potent and non-toxic inhibitors of α-MSH-stimulated melanogenesis to treat pigmentation disorders and skin medication including a cosmetic skin-whitening agent. The SAR studies revealed that cyclohexyl ester and secondary amide derivatives of caffeic acid showed significant inhibitory activities.  相似文献   
997.
Whole‐genome sequencing of matched germline and tumour pairs in a well‐characterized cohort of melanoma patients allowed investigation of associations between melanoma body site, age at melanoma onset and MC1R variant status with overall mutation burden and specific base pair changes observed in the corresponding melanoma. We observed statistically significant associations between mutation burden in melanoma and body site, age at onset and MC1R genotype, for both ultraviolet radiation (UVR) signature changes (C>T and CC>TT) and non‐UVR base pair substitutions, as well as with overall variant load.  相似文献   
998.
Melanoma is the most aggressive and deadliest form of skin cancer. A detailed knowledge of the cellular, molecular, and genetic events underlying melanoma progression is highly relevant to diagnosis, prognosis and risk stratification, and the development of new therapies. In the last decade, zebrafish have emerged as a valuable model system for the study of melanoma. Pathway conservation, coupled with the availability of robust genetic, transgenic, and chemical tools, has made the zebrafish a powerful model for identifying novel disease genes, visualizing cancer initiation, interrogating tumor–microenvironment interactions, and discovering new therapeutics that regulate melanocyte and melanoma development. In this review, we will give an overview of these studies, and highlight recent advancements that will help unravel melanoma pathogenesis and impact human disease.  相似文献   
999.
Melanoma patients with BRAFV600Emutant tumors display striking responses to BRAF inhibitors (BRAFi); however, almost all invariably relapse with drug‐resistant disease. Here, we report that microRNA‐125a (miR‐125a) expression is upregulated in human melanoma cells and patient tissues upon acquisition of BRAFi resistance. We show that miR‐125a induction confers resistance to BRAFV600E melanoma cells to BRAFi by directly suppressing pro‐apoptotic components of the intrinsic apoptosis pathway, including BAK1 and MLK3. Apoptotic suppression and prolonged survival favor reactivation of the MAPK and AKT pathways by drug‐resistant melanoma cells. We demonstrate that miR‐125a inhibition suppresses the emergence of resistance to BRAFi and, in a subset of resistant melanoma cell lines, leads to partial drug resensitization. Finally, we show that miR‐125a upregulation is mediated by TGFβ signaling. In conclusion, the identification of this novel role for miR‐125a in BRAFi resistance exposes clinically relevant mechanisms of melanoma cell survival that can be exploited therapeutically.  相似文献   
1000.
Malignant conversion of BRAF‐ or NRAS‐mutated melanocytes into melanoma cells can be promoted by PI3′‐lipid signaling. However, the mechanism by which PI3′‐lipid signaling cooperates with mutationally activated BRAF or NRAS has not been adequately explored. Using human NRAS‐ or BRAF‐mutated melanoma cells that co‐express mutationally activated PIK3CA, we explored the contribution of PI3′‐lipid signaling to cell proliferation. Despite mutational activation of PIK3CA, melanoma cells were more sensitive to the biochemical and antiproliferative effects of broader spectrum PI3K inhibitors than to an α‐selective PI3K inhibitor. Combined pharmacological inhibition of MEK1/2 and PI3K signaling elicited more potent antiproliferative effects and greater inhibition of the cell division cycle compared to single‐agent inhibition of either pathway alone. Analysis of signaling downstream of MEK1/2 or PI3K revealed that these pathways cooperate to regulate cell proliferation through mTORC1‐mediated effects on ribosomal protein S6 and 4E‐BP1 phosphorylation in an AKT‐dependent manner. Although PI3K inhibition resulted in cytostatic effects on xenografted NRASQ61H/PIK3CAH1047R melanoma, combined inhibition of MEK1/2 plus PI3K elicited significant melanoma regression. This study provides insights as to how mutationally activated PIK3CA acts in concert with MEK1/2 signaling to cooperatively regulate mTORC1/2 to sustain PIK3CA‐mutated melanoma proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号