首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31649篇
  免费   3211篇
  国内免费   3700篇
  2024年   52篇
  2023年   623篇
  2022年   609篇
  2021年   1105篇
  2020年   1181篇
  2019年   1419篇
  2018年   1140篇
  2017年   1340篇
  2016年   1359篇
  2015年   1312篇
  2014年   1685篇
  2013年   2290篇
  2012年   1487篇
  2011年   1617篇
  2010年   1376篇
  2009年   1849篇
  2008年   1885篇
  2007年   1906篇
  2006年   1611篇
  2005年   1436篇
  2004年   1264篇
  2003年   1123篇
  2002年   963篇
  2001年   925篇
  2000年   882篇
  1999年   772篇
  1998年   628篇
  1997年   549篇
  1996年   459篇
  1995年   436篇
  1994年   410篇
  1993年   334篇
  1992年   331篇
  1991年   322篇
  1990年   239篇
  1989年   207篇
  1988年   166篇
  1987年   169篇
  1986年   169篇
  1985年   127篇
  1984年   127篇
  1983年   93篇
  1982年   143篇
  1981年   88篇
  1980年   102篇
  1979年   64篇
  1978年   50篇
  1977年   29篇
  1976年   25篇
  1975年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
42.
Five polymorphic microsatellite loci were characterized for Penaeus (Litopenaeus) vannamei. Loci were isolated using a partial Sau3A1 genomic library by the sequencing of randomly selected clones and by a biotinylated (CT)10 and (GT)10 probes screening procedure. The last strategy resulted in the most useful data. About 40% of the clones showed a previously reported satellite/microsatellite (PVS1), reducing the chance of finding new microsatellite regions. Whereas two of the microsatellite loci with more than 10 alleles will be useful for mating analysis in a breeding program, the others might prove useful for population genetic studies.  相似文献   
43.
44.
Aim During recent and future climate change, shifts in large‐scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress‐gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad‐scale environmental data. We evaluated the variation of species co‐occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates. Location Europe. Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co‐occurrence patterns. Results Correlation analyses supported the stress‐gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co‐occurrence patterns may play a major role. Main conclusions Our results demonstrate the importance of species co‐occurrence patterns for calibrating improved species distribution models for use in projections of climate effects. The correlation approach is able to localize European areas where inclusion of biotic predictors is effective. The climate‐induced spatial segregation of the major tree species could have ecological and economic consequences.  相似文献   
45.
Fluctuations in marine populations often relate to the supply of recruits by oceanic currents. Variation in these currents is typically driven by large‐scale changes in climate, in particular ENSO (El Nino Southern Oscillation). The dependence on large‐scale climatic changes may, however, be modified by early life history traits of marine taxa. Based on eight years of annual surveys, along 150 km of coastline, we examined how ENSO influenced abundance of juvenile fish, coral spat, and canopy‐forming macroalgae. We then investigated what traits make populations of some fish families more reliant on the ENSO relationship than others. Abundance of juvenile fish and coral recruits was generally positively correlated with the Southern Oscillation Index (SOI), higher densities recorded during La Niña years, when the ENSO‐influenced Leeuwin Current is stronger and sea surface temperature higher. The relationship is typically positive and stronger among fish families with shorter pelagic larval durations and stronger swimming abilities. The relationship is also stronger at sites on the coral back reef, although the strongest of all relationships were among the lethrinids (r = .9), siganids (r = .9), and mullids (r = .8), which recruit to macroalgal meadows in the lagoon. ENSO effects on habitat seem to moderate SOI–juvenile abundance relationship. Macroalgal canopies are higher during La Niña years, providing more favorable habitat for juvenile fish and strengthening the SOI effect on juvenile abundance. Conversely, loss of coral following a La Niña‐related heat wave may have compromised postsettlement survival of coral dependent species, weakening the influence of SOI on their abundance. This assessment of ENSO effects on tropical fish and habitat‐forming biota and how it is mediated by functional ecology improves our ability to predict and manage changes in the replenishment of marine populations.  相似文献   
46.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   
47.
48.
49.
50.
Simple demographic and infectious disease models of buffaloes and other domestic hosts for animal trypanosomosis (surra) caused by Trypanosoma evansi were developed. The animal models contained deterministic and stochastic elements and were linked to simulate the benefit of control regimes for surra in village domestic animal populations in Mindanao, Philippines. The impact of the disease on host fertility and mortality were key factors in determining the economic losses and net-benefit from the control regimes. If using a high (99%) efficacy drug in surra-moderate to high risk areas, then treating all animals twice each year yielded low prevalence in 2 years; targeted treatment of clinically sick animals, constantly monitored (monthly), required 75% fewer treatments but took longer to reach a low prevalence than treating all animals twice each year. At high drug efficacy both of these treatment strategies increased the benefit over untreated animals by 81%. If drug efficacy declined then the benefit obtained from twice yearly treatment of all animals declined rapidly compared with regular monitoring and targeting treatment to clinically sick animals. The current control regimen applied in the Philippines of annual sero-testing for surra and only treating sero-positive animals provided the lowest net-benefit of all the control options simulated and would not be regarded as effective control. The total net-benefit from effective surra control for a typical village in a moderate/high risk area was 7.9 million pesos per annum (US $158,000). The value added to buffaloes, cattle, horses, goats/sheep and pigs as a result of this control was US $88, $84, $151, $7, $114 per animal/year, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号