首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   655篇
  免费   62篇
  国内免费   69篇
  2024年   2篇
  2023年   25篇
  2022年   19篇
  2021年   39篇
  2020年   48篇
  2019年   41篇
  2018年   28篇
  2017年   33篇
  2016年   28篇
  2015年   23篇
  2014年   60篇
  2013年   65篇
  2012年   33篇
  2011年   34篇
  2010年   15篇
  2009年   31篇
  2008年   21篇
  2007年   34篇
  2006年   18篇
  2005年   22篇
  2004年   28篇
  2003年   24篇
  2002年   27篇
  2001年   11篇
  2000年   18篇
  1999年   9篇
  1998年   7篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1974年   1篇
排序方式: 共有786条查询结果,搜索用时 156 毫秒
101.
Plant species are known to adapt locally to their environment, particularly in mountainous areas where conditions can vary drastically over short distances. The climate of such landscapes being largely influenced by topography, using fine‐scale models to evaluate environmental heterogeneity may help detecting adaptation to micro‐habitats. Here, we applied a multiscale landscape genomic approach to detect evidence of local adaptation in the alpine plant Biscutella laevigata. The two gene pools identified, experiencing limited gene flow along a 1‐km ridge, were different in regard to several habitat features derived from a very high resolution (VHR) digital elevation model (DEM). A correlative approach detected signatures of selection along environmental gradients such as altitude, wind exposure, and solar radiation, indicating adaptive pressures likely driven by fine‐scale topography. Using a large panel of DEM‐derived variables as ecologically relevant proxies, our results highlighted the critical role of spatial resolution. These high‐resolution multiscale variables indeed indicate that the robustness of associations between genetic loci and environmental features depends on spatial parameters that are poorly documented. We argue that the scale issue is critical in landscape genomics and that multiscale ecological variables are key to improve our understanding of local adaptation in highly heterogeneous landscapes.  相似文献   
102.
High‐resolution deformation measurements in a functionally graded hard tissue such as human dentin are essential to understand the unbound water‐loss mediated changes and their role in its mechanical integrity. Yet a whole‐field, 3‐dimensional (3D) measurement and characterization of fully hydrated dentin in both macro‐ and micro‐scales remain to be a challenge. This study was conducted in 2 stages. In stage‐1, a stereo‐digital image correlation approach was utilized to determine the water‐loss and load‐induced 3D deformations of teeth in a sagittal section over consecutively acquired frames, from a fully hydrated state to nonhydrated conditions for a period up to 2 hours. The macroscale analysis revealed concentrated residual deformations at the dentin‐enamel‐junction and the apical regions of root in the direction perpendicular to the dentinal tubules. Significant difference in the localized deformation characteristics was observed between the inner and outer aspects of the root dentin. During quasi‐static loadings, further increase in the residual deformation was observed in the dentin. In stage‐2, dentin microstructural variations induced by dynamic water‐loss were assessed with environmental scanning electron microscopy and atomic force microscopy (AFM), showing that the dynamic water‐loss induced distention of dentinal tubules with concave tubular edges, and concurrent contraction of intertubular dentin with convex profile. The findings from the current macro‐ and micro‐scale analysis provided insight on the free‐water‐loss induced regional deformations and ultrastructural changes in human dentin.   相似文献   
103.
104.
Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick’s disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes.  相似文献   
105.
To establish accurate detection methods of process-specific Escherichia coli residual host cell protein (HCP) and residual host cell DNA (rcDNA) in recombinant biological preparations. Taking the purification process of GLP expressed by E. coli as a specific-process model, the HCP of empty E. coli was intercepted to immunize mice and rabbits. Using IgG from immunized rabbits as the coating antibody and mouse immune serum as the second sandwich antibody, a process-specific enzyme-linked immunosorbent assay (ELISA) for E. coli HCP was established. Targeting the 16S gene of E. coli, ddPCR was used to obtain the absolute copies of rcDNA in samples. Non-process-specific commercial ELISA kit and the process-specific ELISA established in this study were used to detect the HCP in GLP preparation. About 62% of HCPs, which should be process-specific HCPs, could not be detected by the non-process-specific commercial ELISA kit. The sensitivity of established ELISA can reach 338 pg/mL. The rcDNA could be absolutely quantitated by ddPCR, for the copies of rcDNA in three multiple diluted samples showed a reduced gradient. While the copies of rcDNA in three multiple diluted samples could not be distinguished by the qPCR. Process-specific ELISA has high sensitivity in detecting process-specific E. coli HCP. The absolutely quantitative ddPCR has much higher accuracy than the relatively quantitative qPCR, it is a nucleic acid quantitative method that is expected to replace qPCR in the future.  相似文献   
106.
Recent advances in distributed information technologies are providing the means to capture and process abundant data, and to reveal associations between variables describing the crop-environment-management interaction. This review describes the determinants and moderating factors influencing how much value a crop producer and his or her advisor can derive from data, and information derived from data. We describe the social, technological, and entrepreneurial processes needed to progress the nonlinear pathway from data to an on-farm decision, and explore the meaning of actionable knowledge; that is, knowledge that can be acted upon and applied to solve a real-world problem. We argue that effective decision support is also a system that supports the learning needs of crop producers and their transactions with trusted advisors. Crop protection, the sub-set of crop management used to mitigate crop loss, is used to illustrate current approaches and technologies to support farmers' decisions. We describe how situational awareness and actionable knowledge could be improved through use of emerging platform technologies, advances in artificial intelligence, consideration of farmer decision style, knowledge capture and maintenance, and embedding technology in human-centered services. Implications for the conduct of research and development are discussed.  相似文献   
107.
108.
The use of electronic devices with light-emitting screens has increased exponentially in the last decade. As a result, humans are almost continuously exposed to unintentional artificial light. We explored the independent and combined effects of two aspects of screen illumination, light wavelength, and intensity, on sleep, its biological regulation, and related functional outcomes. The 2 × 2 repeated-measure design included two independent variables: screen light intensity (low ([LI] versus high [HI]) and wavelength (short [SWL] versus long [LWL]). Nineteen participants (11F, 8M; mean age 24.3 [±2.8] years) underwent four light conditions, LI/SWL, HI/SWL, LI/LWL, and HI/LWL, in counterbalanced order. Each light exposure lasted for two hours (21:00–23:00), following which participants underwent an overnight polysomnography. On each experimental night, oral temperature and urine samples (for melatonin analysis) were collected at multiple time points. Each morning, participants filled out questionnaires and conducted a computerized attention task. Irrespective of light intensity, SWL illumination significantly disrupted sleep continuity and architecture and led to greater self-reported daytime sleepiness. SWL light also altered biological rhythms, subduing the normal nocturnal decline in body temperature and dampening nocturnal melatonin secretion. Light intensity seemed to independently affect sleep as well, but to a lesser degree. Both light intensity and wavelength negatively affected morning attention. In sum, light wavelength seems to have a greater influence than light intensity on sleep and a wide-range of biological and behavioral functions. Given the widespread use of electronic devices today, our findings suggest that screen light exposure at evening may have detrimental effects on human health and performance.  相似文献   
109.
非洲猪瘟病毒微滴数字PCR (ddPCR)方法的建立及应用   总被引:4,自引:1,他引:3  
【目的】非洲猪瘟病毒(African swine fever virus,ASFV)能导致猪群高死亡率,从而造成严重的经济损失。因此,建立严密、高效的防控系统,包括灵敏、准确的诊断方法以及高效的预报预警机制等,以避免ASF传入我国。本文旨在建立一种新型而高灵敏度的ASFV微滴数字PCR(Droplet digital PCR,dd PCR)检测方法。【方法】针对ASFV K205R基因设计一对特异性引物和Taq Man探针,通过反应条件优化,建立了ASFV实时荧光定量PCR(q PCR)和dd PCR检测方法;并对两种方法的线性关系、灵敏性、特异性和重复性进行了评估,利用建立的ASFV检测方法对163份国内和进境的组织样本及血清样本进行检测,血清样本经商品化ASFV ELISA试剂盒复检,评估不同方法检测结果的符合率。【结果】建立的ASFV q PCR和dd PCR检测方法线性关系较好(R2≥0.998),dd PCR的最低检测限度可达到0.36拷贝,在20μL反应体系中约为10拷贝/反应,检测灵敏度是q PCR的10倍。ASFV dd PCR检测方法具有很高的特异性和重复性,不与其他猪常见病毒发生交叉反应。【结论】该方法灵敏度高、特异性强,可作为一种有效的分子生物学方法来诊断ASFV,为防止该病传入我国以及ASFV的实时监测提供新的技术储备,同时促进dd PCR技术在我国的发展和应用。  相似文献   
110.
Trade in freshwater ornamental fish in South Africa is currently regulated by a ‘blacklist’ to prevent potentially invasive taxa from establishing in the country. Because its effective implementation requires accurate identification, the aim of the present study was to test whether DNA barcoding is a useful tool to identify freshwater fishes in the South African pet trade. A total of 351 aquarium fish specimens, representing 185 traded taxa, were sequenced for the mitochondrial COI barcoding marker in 2011 and 2012. Lake Malawi cichlids were treated as a single group due to a lack of resolution in their COI marker, resulting in a data set of 137 successfully sequenced taxa. The Barcode Of Life Database (BOLD) and GenBank were used for taxonomic assignment comparisons. The genetic identification matched the scientific name inferred from the trade name for 60 taxa (43.8%) using BOLD, and for 67 taxa (48.9%) using GenBank. A genetic ID could not be assigned in 47 (34.3%) cases using BOLD and in 37 cases (27%) using GenBank. Whereas DNA barcoding can be a useful tool to help identify imported freshwater fishes, it requires further development of publicly available databases to become a reliable means of identification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号