首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   32篇
  国内免费   4篇
  2023年   4篇
  2022年   2篇
  2021年   9篇
  2020年   11篇
  2019年   16篇
  2018年   16篇
  2017年   3篇
  2016年   6篇
  2015年   16篇
  2014年   27篇
  2013年   27篇
  2012年   19篇
  2011年   14篇
  2010年   16篇
  2009年   17篇
  2008年   19篇
  2007年   17篇
  2006年   20篇
  2005年   15篇
  2004年   6篇
  2003年   10篇
  2002年   5篇
  2001年   6篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
排序方式: 共有309条查询结果,搜索用时 250 毫秒
91.
p120 catenin (p120ctn) regulates cadherin stability, and thus facilitates strong cell-cell adhesion. Previously, we demonstrated that Gα12 interacts with p120ctn. In the present study, we have delineated a region of p120ctn that binds to Gα12. We report that the N-terminal region of p120ctn (amino acids 1-346) is necessary and sufficient for the interaction. While the coiled-coiled domain and a charged region, comprising a.a 102-120, were found to be dispensable, amino acids 121-323 were required for p120ctn binding to Gα12. This region harbors the phosphorylation domain of p120ctn and has been postulated as important for RhoA regulation. Downregulation of Src family kinase-induced tyrosine phosphorylation of p120ctn was observed in the presence of activated Gα12. This down-regulation was triggered by three different Gα12 mutants uncoupled from RhoA signalling. Furthermore, a dominant active form of RhoA did not reduce Src-induced phosphoryaltion of p120ctn. In summary, our results suggest that Gα12 binds to p120ctn and modulates its phosphorylation status through a Rho-independent mechanism. Gα12 emerges as an important regulator of p120ctn function, and possibly of cadherin-mediated adhesion and/or cell motility.  相似文献   
92.
We previously reported that cells chronically exposed to ethanol show alterations in actin cytoskeleton organization and dynamics in primary cultures of newborn rat astrocytes, a well-established in vitro model for foetal alcohol spectrum disorders. These alterations were attributed to a decrease in the cellular levels of active RhoA (RhoA-GTP), which in turn was produced by an increase in the total RhoGAP activity. We here provide evidence that p190RhoGAPs are the main factors responsible for such increase. Thus, in astrocytes chronically exposed to ethanol we observe: (i) an increase in p190A- and p190B-associated RhoGAP activity; (ii) a higher binding of p190A and p190B to RhoA-GTP; (iii) a higher p120RasGAP-p190A RhoGAP complex formation; and (iv) the recruitment of both p190RhoGAPs to the plasma membrane. The simultaneous silencing of both p190 isoforms prevents the actin rearrangements and the total RhoGAP activity increase triggered both by ethanol. Therefore, our data directly points p190RhoGAPs as ethanol-exposure molecular targets on glial cells of the CNS.  相似文献   
93.
We have previously demonstrated that inflammatory compounds that increase nitric oxide (NO) synthase expression have a biphasic effect on the level of the NO messenger cGMP in astrocytes. In this work, we demonstrate that NO-dependent cGMP formation is involved in the morphological change induced by lipopolysaccharide (LPS) in cultured rat cerebellar astroglia. In agreement with this, dibutyryl-cGMP, a permeable cGMP analogue, and atrial natriuretic peptide, a ligand for particulate guanylyl cyclase, are both able to induce process elongation and branching in astrocytes resulting from a rapid, reversible and concentration-dependent redistribution of glial fibrillary acidic protein (GFAP) and actin filaments without significant change in protein levels. These effects are also observed in astrocytes co-cultured with neurons. The cytoskeleton rearrangement induced by cGMP is prevented by the specific protein kinase G inhibitor Rp-8Br-PET-cGMPS and involves downstream inhibition of RhoA GTPase since is not observed in cells transfected with constitutively active RhoA. Furthermore, dibutyryl-cGMP prevents RhoA-membrane association, a step necessary for its interaction with effectors. Stimulation of the cGMP-protein kinase G pathway also leads to increased astrocyte migration in an in vitro scratch-wound assay resulting in accelerated wound closure, as seen in reactive gliosis following brain injury. These results indicate that cGMP-mediated pathways may regulate physio-pathologically relevant responses in astroglial cells.  相似文献   
94.
Recent studies suggest that sphingosine 1-phosphate (S1P) protects against atherosclerosis. We assessed the effects of S1P on monocyte-endothelial interaction in the presence of inflammatory mediators. Pretreatment of THP-1 cells with S1P abolished Phorbol 12 myristate 13-acetate (PMA)-induced THP-1 cell adhesion to human umbilical vein endothelial cells (HUVECs). S1P inhibited PMA-induced activation of RhoA, but not PKCs. S1P activated p190Rho GTPase activation protein (GAP) only in the presence of PMA, suggesting an inhibitory effect of S1P and PMA to suppress RhoA. In conclusion, S1P inhibited monocyte-endothelial interactions by inhibiting RhoA activity which may explain its anti-atherogenic effects.  相似文献   
95.
Mechanical stretch is essential for the cardiac growth. The exposure of cardiac myocytes to the mechanical stretch leads to the cell alignment in parallel to the stretch direction, determining the cell polarity, though it remains to be addressed how mechanical stretch regulates cell orientation. In the present study, we investigated the signal transduction pathways responsible for the cell orientation response to mechanical stretch, focusing on Rho family proteins. Neonatal rat cardiomyocytes were cultured on silicon chambers and exposed to artificial uniaxial cyclic stretch. The pull-down assays revealed that Rac1 was rapidly activated by stretch, but not RhoA. To analyze the roles of Rho family proteins in cardiomyocyte orientation, adenoviral vectors expressing dominant-negative (dn) RhoA and Rac1 were generated. The transfection with adenovirus vector expressing dnRac1, but not dnRhoA, inhibited stretch-induced cell alignment. In conclusion, Rac1 activity is necessary for cardiomyocyte alignment in response to directional stretch.  相似文献   
96.
Gastric cancer (GC) is one of the main causes of cancer-related mortality worldwide. Epithelial-mesenchymal transition (EMT) is an important biological process involving the process by which malignant tumor cells obtain the ability of migration, invasion, resistance of apoptosis, and degradation in the extracellular matrix. The current study aimed at investigating whether bone marrow X kinase Rho GTPase activating protein 12 (BMX-ARHGAP) fusion gene affects GC. First, short hairpin RNA (shRNA) against BMX-ARHGAP or BMX-ARHGAP were introduced to treat SGC-7901 cells with the highest BMX-ARHGAP among the five GC cell lines (SGC-7901, MKN-45, NCI-N87, SNU-5, and AGS). Next, cell vitality, drug resistance, migration, and invasion of SGC-7901 cells, activities of Rho and JAK/STAT axis, as well as EMT and lymph node metastasis (LNM) were evaluated. The survival rate of the mice was then determined through the transfection of the specific pathogen-free NOD-SCID mice with treated SGC-7901 cells. The results showed that BMX-ARHGAP expression was associated with the infiltration degree of GC tumor and poor prognosis for patients with GC. BMX-ARHGAP silencing was found to play an inhibitory role in the Rho and JAK/STAT axis to reduce cell vitality, drug resistance, migration and invasion, reverse EMT process, as well as inhibit LNM. BMX-ARHGAP overexpression was observed to have induced effects on GC cells as opposed to those inhibited by BMX-ARHGAP silencing. The survival rate of mice was increased after transfection with silenced BMX-ARHGAP. These findings provided evidence that the suppression of BMX-ARHGAP resulted in the inhibition of RhoA to restraint the development of GC cells by blocking the JAK/STAT axis.  相似文献   
97.
Apoptosis plays an important role in cellular processes such as development, differentiation, and homeostasis. Although the participation of angiotensin II (Ang II) AT2 receptors (AT 2R) in cellular apoptosis is well accepted, the signaling pathway involved in this process is not well established. We evaluated the participation of signaling proteins focal adhesion kinase (FAK), RhoA, and p38 mitogen-activated protein kinase (p38MAPK) in apoptosis induced by Ang II via AT 2R overexpressed in HeLa cells. Following a short stimulation time (120 to 240 minutes) with Ang II, HeLa-AT 2 cells showed nuclear condensation, stress fibers disassembly and membrane blebbing. FAK, classically involved in cytoskeleton reorganization, has been postulated as an early marker of cellular apoptosis. Thus, we evaluated FAK cleavage, detected at early stimulation times (15 to 30 minutes). Apoptosis was confirmed by increased caspase-3 cleavage and enzymatic activity of caspase-3/7. Participation of RhoA was evaluated. HeLa-AT 2 cells overexpressing RhoA wild-type (WT) or their mutants, RhoA V14 (constitutively active form) or RhoA N19 (dominant-negative form) were used to explore RhoA participation. HeLa-AT 2 cells expressing the constitutively active variant RhoA V14 showed enhanced apoptotic features at earlier times as compared with cells expressing the WT variant. RhoA N19 expression prevented nuclear condensation/caspase activation. Inhibition of p38MAPK caused an increase in nuclear condensation and caspase-3/7 activation, suggesting a protective role of p38MAPK. Our results clearly demonstrated that stimulation of AT 2R induce apoptosis with participation of FAK and RhoA while p38MAPK seems to play a prosurvival role.  相似文献   
98.
Spatio-temporal control of RhoA GTPase is critical for regulation of cell migration, attachment to extracellular matrix, and cell–cell adhesions. Activation of RhoA is mediated by guanine nucleotide exchange factors (GEFs), a diverse family of enzymes that are controlled by multiple signaling pathways regulating actin cytoskeleton and cell migration. GEFs can be regulated by different mechanisms. Growing evidence demonstrates that phosphorylation serves as one of the predominant signals controlling activity, interactions, and localization of RhoGEFs. It acts as a positive and a negative regulator, and allows for regulation of RhoGEFs by multiple signaling cascades. Although there are common trends in phosphorylation-mediated regulation of some RhoGEF homologs, the majority of GEFs utilize distinct mechanisms that are dictated by their unique structure and interaction networks. This diversity enables multiple signaling pathways to use different RhoGEFs for regulation of a single central—RhoA. Here, we review current examples of phosphorylation-mediated regulation of GEFs for RhoA and its role in cell migration, discuss mechanisms, and provide insights into potential future directions.  相似文献   
99.
Expression of the pro-inflammatory cytokine interleukin-1 beta (IL-1β) is increased following the nervous system injury. Generally IL-1β induces inflammation, leading to neural degeneration, while several neuropoietic effects have also been reported. Although neurite outgrowth is an important step in nerve regeneration, whether IL-1β takes advantages on it is unclear. Now we examine how it affects neurite outgrowth. Following sciatic nerve injury, expression of IL-1β is increased in Schwann cells around the site of injury, peaking 1 day after injury. In dorsal root ganglion (DRG) neurons and cerebellar granule neurons (CGNs), neurite outgrowth is inhibited by the addition of myelin-associated glycoprotein (MAG), activating RhoA. IL-1β overcomes MAG-induced neurite outgrowth inhibition, by deactivating RhoA. Intracellular signaling experiments reveal that p38 MAPK, and not nuclear factor-kappa B (NF-κB), mediated this effect. These findings suggest that IL-1β may contribute to nerve regeneration by promoting neurite outgrowth following nerve injury.  相似文献   
100.
Sphingosine 1-phosphate (S1P) induced the inhibition of glioma cell migration. Here, we characterized the signaling mechanisms involved in the inhibitory action by S1P. In human GNS-3314 glioblastoma cells, the S1P-induced inhibition of cell migration was associated with activation of RhoA and suppression of Rac1. The inhibitory action of S1P was recovered by a small interference RNA specific to S1P2 receptor, a carboxyl-terminal region of Gα12 or Gα13, an RGS domain of p115RhoGEF, and a dominant-negative mutant of RhoA. The inhibitory action of S1P through S1P2 receptors was also observed in both U87MG glioblastoma and 1321N1 astrocytoma cells, which have no protein expression of a phosphatase and tensin homolog deleted on chromosome 10 (PTEN). These results suggest that S1P2 receptors/G12/13-proteins/Rho signaling pathways mediate S1P-induced inhibition of glioma cell migration. However, PTEN, recently postulated as an indispensable molecule for the inhibition of cell migration, may not be critical for the S1P2 receptor-mediated action in glioma cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号