首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   2篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   18篇
  2013年   19篇
  2012年   26篇
  2011年   39篇
  2010年   31篇
  2009年   4篇
  2008年   8篇
  2007年   9篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有194条查询结果,搜索用时 328 毫秒
61.
Recent evidence suggests that extracellular matrix components may play a signaling role in embryonic valve development. We have previously identified the spatiotemporal expression patterns of periostin in developing valves, but its function during this process is largely unknown. To evaluate the functional role periostin plays during valvulogenesis, two separate three-dimensional culture assay systems, which model chick atrioventricular cushion development, were employed. These assays demonstrated that cushion mesenchymal cells adhered and spread on purified periostin in a dose-responsive manner, similar to collagen I and fibronectin via alpha(v)beta(3) and beta(1) integrin pairs. Periostin overexpression resulted in enhanced mesenchyme invasion through 3D collagen gels and increased matrix compaction. This invasion was dependent on alpha(v)beta(3) more than beta(1) integrin signaling, and was mediated differentially by Rho kinase and PI 3-kinase. Both matrix invasion and compaction were associated with a colocalization of periostin and beta(1) integrin expression to migratory cell phenotype in both surface and deep cells. The Rho/PI 3-kinase pathway also differentially mediated matrix compaction. Both Rho and PI 3-kinase were involved in normal cushion mesenchyme matrix compaction, but only PI 3-kinase was required for the enhanced matrix compaction due to periostin. Taken together, these results highlight periostin as a mediator of matrix remodeling by cushion mesenchyme towards a mature valve structure.  相似文献   
62.
63.
Although mutations or deletions of chromodomain helicase DNA-binding protein 5 (CHD5) have been linked to cancer and implicate CHD5 in tumor suppression, the ATP-dependent activity of CHD5 is currently unknown. In this study, we discovered that CHD5 is a chromatin remodeling factor with a unique enzymatic activity. CHD5 can expose nucleosomal DNA at one or two discrete positions in the nucleosome. The exposure of the nucleosomal DNA by CHD5 is dependent on ATP hydrolysis, but continued ATP hydrolysis is not required to maintain the nucleosomes in their remodeled state. The activity of CHD5 is distinct from other related chromatin remodeling ATPases, such as ACF and BRG1, and does not lead to complete disruption or destabilization of the nucleosome. Rather, CHD5 likely initiates remodeling in a manner similar to that of other remodeling factors but does not significantly reposition the nucleosome. While the related factor CHD4 shows strong ATPase activity, it does not unwrap nucleosomes as efficiently as CHD5. Our findings add to the growing evidence that chromatin remodeling ATPases have diverse roles in modulating chromatin structure.  相似文献   
64.

Objective

Whether distal inflammation in asthmatics also leads to structural changes in the alveolar parenchyma remains poorly examined, especially in patients with uncontrolled asthma. We hypothesized that patients who do not respond to conventional inhaled corticosteroid therapy have a distinct tissue composition, not only in central, but also in distal lung.

Methods

Bronchial and transbronchial biopsies from healthy controls, patients with controlled atopic and patients with uncontrolled atopic asthma were processed for immunohistochemical analysis of fibroblasts and extracellular matrix molecules: collagen, versican, biglycan, decorin, fibronectin, EDA-fibronectin, matrix metalloproteinase (MMP)-9 and tissue-inhibitor of matrix metalloproteinase (TIMP)-3.

Results

In central airways we found increased percentage areas of versican and decorin in patients with uncontrolled asthma compared to both healthy controls and patients with controlled asthma. Percentage area of biglycan was significantly higher in both central airways and alveolar parenchyma of patients with uncontrolled compared to controlled asthma. Ratios of MMP-9/TIMP-3 were decreased in both uncontrolled and controlled asthma compared to healthy controls. In the alveolar parenchyma, patients with uncontrolled asthma had increased percentage areas of collagen, versican and decorin compared to patients with controlled asthma. Patients with uncontrolled asthma had significantly higher numbers of myofibroblasts in both central airways and alveolar parenchyma compared to patients with controlled asthma.

Conclusions

Tissue composition differs, in both central and distal airways, between patients with uncontrolled and controlled asthma on equivalent doses of ICS. This altered structure and possible change in tissue elasticity may lead to abnormal mechanical properties, which could be a factor in the persistent symptoms for patients with uncontrolled asthma.  相似文献   
65.
66.
67.

Background

Chronic thromboembolic pulmonary hypertension (CTEPH) is associated with proximal pulmonary artery obstruction and vascular remodeling. We hypothesized that pulmonary arterial smooth muscle (PASMC) and endothelial cells (PAEC) may actively contribute to remodeling of the proximal pulmonary vascular wall in CTEPH. Our present objective was to characterize PASMC and PAEC from large arteries of CTEPH patients and investigate their potential involvement in vascular remodeling.

Methods

Primary cultures of proximal PAEC and PASMC from patients with CTEPH, with non-thromboembolic pulmonary hypertension (PH) and lung donors have been established. PAEC and PASMC have been characterized by immunofluorescence using specific markers. Expression of smooth muscle specific markers within the pulmonary vascular wall has been studied by immunofluorescence and Western blotting. Mitogenic activity and migratory capacity of PASMC and PAEC have been investigated in vitro.

Results

PAEC express CD31 on their surface, von Willebrand factor in Weibel-Palade bodies and take up acetylated LDL. PASMC express various differentiation markers including α-smooth muscle actin (α-SMA), desmin and smooth muscle myosin heavy chain (SMMHC). In vascular tissue from CTEPH and non-thromboembolic PH patients, expression of α-SMA and desmin is down-regulated compared to lung donors; desmin expression is also down-regulated in vascular tissue from CTEPH compared to non-thromboembolic PH patients. A low proportion of α-SMA positive cells express desmin and SMMHC in the neointima of proximal pulmonary arteries from CTEPH patients. Serum-induced mitogenic activity of PAEC and PASMC, as well as migratory capacity of PASMC, were increased in CTEPH only.

Conclusions

Modified proliferative and/or migratory responses of PASMC and PAEC in vitro, associated to a proliferative phenotype of PASMC suggest that PASMC and PAEC could contribute to proximal vascular remodeling in CTEPH.  相似文献   
68.
目的:探讨变应性鼻炎(allergic rhinitis AR)鼻黏膜组织是否存在重塑并检测与组织重塑密切相关的转化生长因子β1(TGF-β1)在AR患者鼻黏膜组织中的表达及意义。方法:取健康自愿者、轻度间歇性AR患者、重度持续性AR患者的中鼻甲黏膜组织各10例。苏木素伊红(HE)染色法观察嗜酸细胞浸润并测定上皮损伤情况;阿辛蓝-过碘酸-希夫(AB-PAS)染色法计数杯状细胞数;三色胶原(MT)染色测定细胞外基质沉积面积百分比。酶联免疫吸附试验(ELISA)测定组织中TGF-β1的表达。结果:①对照组无明显嗜酸细胞浸润,两鼻炎组较多嗜酸细胞浸润(P<0.01),②轻度AR组中仅上皮细胞损伤1级比对照组明显(P<0.01),重度AR组上皮损伤1、2、3级均比对照组明显(P<0.01),③两鼻炎组杯状细胞数明显多于对照组(P值均<0.01),④与对照组相比,轻度AR组胶原沉积面积增多,但无统计学意义(P>0.05),重度AR组明显增多(P<0.01),⑤TGF-β1在两鼻炎组黏膜中的表达均比对照组显著增高(P<0.01);重度AR组TGF-β1的表达均比轻度AR组增高,具有统计学意义(P<0.05)。结论:AR的鼻黏膜组织发生了重塑,表现为:上皮细胞损伤,杯状细胞化生,细胞外基质沉积,重度AR患者的鼻黏膜重塑更强,更广泛。TGF-β1积极参与了AR鼻黏膜组织的重塑过程。  相似文献   
69.
Tumors acquire sufficient oxygen and nutrient supply by coopting host vessels and neovasculature created via angiogenesis, thereby transforming a highly ordered network into chaotic heterogeneous tumor specific vasculature. Vessel regression inside the tumor leads to large regions of necrotic tissue interspersed with isolated surviving vessels. We extend our recently introduced model to incorporate Fahraeus-Lindqvist- and phase separation effects, refined tissue oxygen level computation and drug flow computations. We find, unexpectedly, that collapse and regression accelerates rather than diminishes the perfusion and that a tracer substance flowing through the remodeled network reaches all parts of the tumor vasculature very well. The reason for decreased drug delivery well known in tumors should therefore be different from collapse and vessel regression. Implications for drug delivery in real tumors are discussed.  相似文献   
70.
In mechanical disuse conditions associated with immobilization and microgravity in spaceflight, cortical endosteal surface moved outward with periosteal surface moving slightly or unchanged, resulting in reduction of cortical thickness. Reduced thickness of the shaft cortex of long bone can be considered as an independent predictor of fractures. Accordingly, it is important to study the remodeling process at cortical endosteal surface. This paper presents a computer simulation of cortical endosteal remodeling induced by mechanical disuse at the Basic Multicellular Units level with cortical thickness as controlling variables. The remodeling analysis was performed on a representative rectangular slice of the cross section of cortical bone volume. The pQCT data showing the relationship between the duration of paralysis and bone structure of spinal cord injured patients by Eser et al. (2004) were used as an example of mechanical disuse to validate the model. Cortical thickness, BMU activation frequency, mechanical load and principal compressive strain for tibia and femur cortical models were simulated. The effects of varying the mechanical load and maximum BMU activation frequency were also investigated. The cortical thicknesses of femur and tibia models were both consistent with the clinical data. Varying the decreasing coefficient in mechanical load equation had little effect on the steady state values of cortical thickness and BMU activation frequency. However, it had much effect on the time to reach steady state. The maximum BMU activation frequency had effects on both the steady state value and the time to reach steady state for cortical thickness and BMU activation frequency. The computational model for cortical endosteal surface remodeling developed in this paper can be further used to quantify and predict the effects of mechanical factors and biological factors on cortical thickness and help us to better understand the relationship between bone morphology and mechanical as well as biological environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号