首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1484篇
  免费   105篇
  国内免费   109篇
  2024年   1篇
  2023年   21篇
  2022年   15篇
  2021年   33篇
  2020年   33篇
  2019年   46篇
  2018年   60篇
  2017年   32篇
  2016年   50篇
  2015年   70篇
  2014年   94篇
  2013年   128篇
  2012年   108篇
  2011年   149篇
  2010年   123篇
  2009年   103篇
  2008年   129篇
  2007年   150篇
  2006年   126篇
  2005年   89篇
  2004年   67篇
  2003年   39篇
  2002年   22篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1950年   2篇
排序方式: 共有1698条查询结果,搜索用时 281 毫秒
51.
【目的】精氨酸激酶(arginine kinase, AK)(EC 2.7.3.3)是昆虫体内重要的磷酸原激酶(能量代谢调节因子),也是唯一能够形成有效ATP的磷酰基供体,起着与脊椎动物中肌酸激酶相同的作用。本研究旨在了解鳞翅目害虫AK基因的表达和功能。【方法】利用qRT-PCR方法测定AK基因在大螟Sesamia inferens、二化螟Chilo suppressalis、甜菜夜蛾Spodoptera exigua和斜纹夜蛾Spodoptera litura 这4种鳞翅目害虫不同发育阶段和3龄幼虫不同组织中的表达谱;通过终点法检测了这4种害虫不同发育阶段和幼虫不同组织中的AK酶活性;采用RNAi技术抑制该基因的表达并分析其功能。【结果】AK基因在大螟、二化螟、甜菜夜蛾和斜纹夜蛾这4种鳞翅目昆虫的不同发育阶段和3龄幼虫不同组织中均有表达,说明该基因的表达不具有发育时期和组织特异性。不同发育时期和3龄幼虫不同组织中AK酶活性与基因表达量变化趋势大体一致。注射以AK基因为靶标的dsRNA 6 d后,4种害虫体内AK基因的mRNA表达下降30%~50%,AK酶活性降低30%左右;14 d后幼虫的死亡率达50%左右,显著高于对照组幼虫的死亡率。【结论】AK基因在上述4种鳞翅目害虫中为组成型表达,RNAi抑制AK基因的表达可导致4种害虫的幼虫死亡,研究结果为开发以AK基因为靶标的鳞翅目害虫防治新技术提供了理论依据。  相似文献   
52.
【目的】棉铃虫Helicoverpa armigera的剂量补偿(dosage compensation, DC)分子机制尚不清楚。本研究旨在通过克隆棉铃虫雄性特异性致死(male specific lethal, msl) 基因Hamsl1,利用RNA干扰技术明确其是否参与调控棉铃虫剂量补偿。【方法】利用RT-PCR同源克隆棉铃虫Hamsl1基因全长cDNA; 利用qPCR技术研究Hamsl1基因在棉铃虫不同发育时期的表达谱;通过显微注射Hamsl1 siRNA到棉铃虫3龄幼虫中对Hamsl1基因进行RNA干扰后,利用qPCR技术检测15个Z染色体基因的表达情况,分析Hamsl1是否调控Z染色体基因剂量。【结果】成功克隆了棉铃虫Hamsl1基因的cDNA序列,鉴定出Hamsl1基因mRNA存在2种剪接体,分别命名为Hamsl1a(GenBank登录号: MK564008)和Hamsl1b(GenBank登录号: MK564009)。功能域分析发现HaMSL1含有典型的PEHE和coiled-coil功能域,具有MSL1蛋白的特征。qPCR分析表明,Hamsl1基因位于棉铃虫Z染色体上;棉铃虫Hamsl1a与Hamsl1b基因表达均具有发育时期特异性,在成虫期表达量最高,且雌雄化蛹后基因表达量差异显著,具有性别特异性。通过同源比对和qPCR分析,在DNA水平鉴定了15个Z染色体候选基因。显微注射Hamsl1 siRNA于3龄幼虫体内72 h,干扰效率为36.01%~64.27%,并未发生雄性致死现象;与对照组相比,Hamsl1 RNAi处理组中棉铃虫15个Z染色体基因在雄性个体中整体呈现表达量上调趋势,而在雌性个体中平均表达水平差异不显著。【结论】本研究初步探明Hamsl1基因位于棉铃虫Z染色体上,且该基因可能通过抑制雄性棉铃虫Z染色体基因表达,调控棉铃虫Z染色体剂量补偿。本研究为深入研究棉铃虫剂量补偿分子机制和绿色防控棉铃虫提供了理论基础。  相似文献   
53.
Aquaculture suffers from a number of diseases caused by Aeromonas hydrophila. Biofilm can protect bacteria from antibiotic therapy. To identify the genes those play crucial roles in A. hydrophila biofilm formation, a library of mini-Tn10 transposon insertion mutants of A. hydrophila B11 has been constructed, and 10 mutants were subjected to biofilm formation assay. The biofilm formation ability of mutant (B188) was significantly decreased compared with B11. The DNA sequence flanking the mini-Tn10 transposon inserted showed that an ORF of approximately 576 bp of the mutant strain B188 was inserted. This ORF putatively displays the highest identity (92%) with the cytochrome c4 gene (cyt-c4) of A. hydrophila subsp. hydrophila ATCC 7966. Silencing cyt-c4 led to deficiencies in biofilm formation, adhesion, drug resistance and pathogenicity of A. hydrophila, which suggests that cyt-c4 plays crucial role in the biofilm formation and virulence mechanisms of A. hydrophila.

ABBREVIATIONS: GEN: gentamycin; SDZ: sulfadiazine; AK: amikacin; P: penicillin; CFP: cefoperazone; LEV: levofloxacin; MH: minocycline; FFC: florfenicol; TE: tetracycline; AMP: ampicillin; KAN: kanamycin; STR: streptomycin; SXT: sulfamethoxazole/trimethoprim; DO: doxycycline; OT: Oxytetracycline.  相似文献   

54.
55.
1. RNA interference (RNAi) is a multicomponent machinery that operates in a sequence-specific manner to repress the expression of genes in most eukaryotic cells.2. Here we wanted to investigate in a murine neuroblastoma cell line (NBP2) (a) if replacement of the loop of the short hairpin RNA (shRNA) with a hammerhead ribozyme (shRNA.RZ) or an antisense oligonucleotide (shRNA.AS) would affect the efficacy of gene suppression, and (b) if activation or inhibition of signaling pathways would enhance the efficacy of shRNA, shRNA.RZ, and shRNA.AS complex in gene silencing.3. We used U6-driven expression of these shRNAs to target either a short-lived green fluorescent protein (d2EGFP) or an endogenous cyclophilin A (CyP-A) gene in a d2EGFP expressing NBP2 cell line (NBP2-PN25).4. Activation of the cAMP signaling pathway or inhibition of phosphatidylinositol 3-kinase (PI3K) enhanced the efficacy of shRNA and shRNA.RZ complex in reducing the expression of d2EGFP shRNA.RZ complex was as efficacious as shRNA in reducing the expression of d2EGFP and CyP-A shRNA.AS complex showed a slightly lower efficacy than shRNA alone in decreasing d2EGFP expression. In contrast, the U6-driven hammerhead ribozyme targeted to d2EGFP showed no gene silencing activity.5. This report describes novel strategies of modifying shRNA and altering signaling pathways to affect siRNA-mediated gene silencing in a neuronal cell line.  相似文献   
56.
The interpretation of experiments involving the overexpression of a recombinant cDNA is often hampered by the interference of mRNA expression from the endogenous gene locus. Unless cell lines from naturally occurring mutations or knockout mice are available, difficult and time-consuming gene targeting techniques are required to inhibit endogenous gene expression. Using a method we refer to as "differential RNA interference" we demonstrate that RNA interference can be used to selectively suppress endogenous gene expression without affecting the expression of a co-transfected recombinant version of the same protein. Functional analyses of recombinant low density lipoprotein receptor-related protein (LRP) to study its involvement in lipid metabolism have been shown to be extremely difficult due to its large cDNA and the unavailability of suitable LRP-deficient cell lines. We constructed an expression vector containing the full-length coding sequence of human LRP fused to EGFP and a vector expressing small hairpin RNA directed against the 3'-untranslated region of the wild-type human LRP mRNA (LRP-shRNA). When overexpressed, EGFP-tagged LRP colocalizes with endogenous LRP and stimulates the uptake of LRP ligands. Overexpression of LRP-shRNA vectors significantly inhibits LRP expression, as judged by quantitative RT-PCR, Western blot and immunofluorescence analysis, and it dramatically decreases receptor-associated protein (RAP) uptake. Finally, co-transfection of EGFP-LRP and LRP-shRNA vectors demonstrates selective inhibition of endogenous LRP expression without affecting simultaneous expression of recombinant LRP protein. Thus, utilization of "differential RNA interference" provides a new experimental approach to selectively study the function of any recombinant protein in any given cell line without interference of endogenous protein expression.  相似文献   
57.
Intestinal cells of C. elegans show an unexpectedly high complexity of cytoplasmic intermediate filament (IF) proteins. Of the 11 known IF genes six are coexpressed in the intestine, i.e. genes B2, C1, C2, D1, D2, and E1. Specific antibodies and GFP-promoter constructs show that genes B2, D1, D2, and E1 are exclusively expressed in intestinal cells. Using RNA interference (RNAi) by microinjection at 25 degrees C rather than at 20 degrees C we observe for the first time lethal phenotypes for C1 and D2. RNAi at 25 degrees C also shows that the known A1 phenotype occurs already in the late embryo after microinjection and is also observed by feeding which was not the case at 20 degrees C. Thus, RNAi at 25 degrees C may also be useful for the future analysis of other nematode genes. Finally, we show that triple RNAi at 20 degrees C is necessary for the combinations B2, D1, E1 and B2, D1, D2 to obtain a phenotype. Together with earlier results on genes A1, A2, A3, B1, and C2 RNAi phenotypes are now established for all 11IF genes except for the A4 gene. RNAi phenotypes except for A2 (early larval lethality) and C2 (adult phenotype) relate to the late embryo. We conclude that in C. elegans cytoplasmic IFs are required for tissue integrity including late embryonic stages. This is in strong contrast to the mouse, where ablation of IF genes apparently does not affect the embryo proper.  相似文献   
58.
The RING finger motif exists in E3 ligases of the ubiquitination pathway. These ubiquitin ligases bind to target proteins, leading to their modification by covalent addition of ubiquitin peptides. Current databases contain hundreds of proteins with RING finger motifs. This study investigates the role of RING finger genes in embryogenesis of the nematode, Caenorhabditis elegans. We expand the previous list of RING finger-containing genes and show that there are 103 RING finger-containing genes in the C. elegans genome. DNA microarrays of these 103 genes were probed with various RNA samples to identify 16 RING finger genes whose expression is enriched in the germline. RNA interference (RNAi) analysis was then used to determine the developmental role of these genes. One RING finger gene, C32D5.10, showed a dramatic larval arrest upon RNAi. Three RING finger genes exhibited embryonic lethality after RNAi. These three genes include par-2, and two small RING finger proteins: F35G12.9 (an ortholog of APC11) and ZK287.5 (an ortholog of rbx1). Embryos from RNAi of the APC11 and rbx1 orthologs were arrested in the cell cycle, confirming the role of these particular RING finger proteins in regulation of the cell cycle. genesis 38:1-12, 2004.  相似文献   
59.
RNA-mediated interference (RNAi) has been reported to be an effective reverse genetic approach for studying gene function in various organisms. To assess RNAi as a means of examining genes expressed in ovarian follicle cells for their involvement in embryonic dorsal-ventral patterning, we tested the ability of transgenically expressed double-stranded RNA (dsRNA) directed against the dorsal group gene windbeutel to generate phenotypic effects in the progeny of expressing females. We observed that expression in follicle cells under the control of Gal4 transcribed from the strong and widely expressed alphaTub84B or Actin5C promoters led to efficient dorsalization of progeny embryos. Surprisingly, a variety of strongly expressed follicle cell-specific Gal4 enhancer trap lines failed to elicit an RNAi phenotype in combination with the windbeutel-specific dsRNA. These results stress the importance of careful choice of expression system and of conditions for use in transgenic RNAi-mediated studies of gene function.  相似文献   
60.
Extracellular matrix overexpression is a common final pathway that leads to ventricular remodeling. Fibronectin plays a pivotal role in this progress. In the work presented here, we explored the possibility of direct inhibition of fibronectin synthesis in rat cardiac fibroblasts by small interference RNA (siRNA). We found that siRNA could successfully suppress the fibronectin overexpression stimulated by angiotensin II. To overcome the limitations of plasmid-based siRNA, we subcloned the H1 promoter into pLXIN, a commercially available retroviral vector. We found that H1 promoter worked very well to form the small hairpin RNA (shRNA) on the retroviral vector, and the fibronectin expression was dramatically down regulated by shRNA. We think the retroviral shRNA delivery system that we have constructed may have potential roles in treating ventricular remodeling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号