首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   0篇
  国内免费   1篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   12篇
  2012年   2篇
  2011年   12篇
  2010年   1篇
  2009年   9篇
  2008年   15篇
  2007年   11篇
  2006年   5篇
  2005年   6篇
  2004年   14篇
  2003年   10篇
  2002年   7篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1993年   3篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1987年   2篇
  1986年   2篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1971年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
91.
92.
Quinone reductase activity of azoreductase AZR from Rhodobacter sphaeroides was reported. High homologies were found in the cofactor/substrate-binding regions of quinone reductases from different domains. 3D structure comparison revealed that AZR shared a common overall topology with mammal NAD(P)H/quinone oxidoreductase NQO1. With menadione as substrate, the optimal pH value and temperature were pH 8-9 and 50 degrees C, respectively. Following the ping-pong kinetics, AZR transferred two electrons from NADPH to quinone substrate. It could reduce naphthoquinones and anthraquinones, such as menadione, lawsone, anthraquinone-2-sulfonate, and anthraquinone-2,6-disulfonate. However, no activity was detected with 1,4-benzoquinone. Dicoumarol competitively inhibited AZR's quinone reductase activity with respect to NADPH, with an obtained K (i) value of 87.6 muM. Significantly higher survival rates were obtained in Escherichia coli YB overexpressing AZR than in the control strain when treated by heat shock and oxidative stressors such as H(2)O(2) and menadione.  相似文献   
93.
In the present study, the inhibition of human glutathione S-transferase P1-1 (GSTP1-1) by the flavonoid quercetin has been investigated. The results show a time- and concentration-dependent inhibition of GSTP1-1 by quercetin. GSTP1-1 activity is completely inhibited upon 1 h incubation with 100 microM quercetin or 2 h incubation with 25 microM quercetin, whereas 1 and 10 microM quercetin inhibit GSTP1-1 activity to a significant extent reaching a maximum of 25 and 42% inhibition respectively after 2 h. Co-incubation with tyrosinase greatly enhances the rate of inactivation, whereas co-incubation with ascorbic acid or glutathione prevents this inhibition. Addition of glutathione upon complete inactivation of GSTP1-1 partially restores the activity. Inhibition studies with the GSTP1-1 mutants C47S, C101S and the double mutant C47S/C101S showed that cysteine 47 is the key residue in the interaction between quercetin and GSTP1-1. HPLC and LC-MS analysis of trypsin digested GSTP1-1 inhibited by quercetin did not show formation of a covalent bond between Cys 47 residue of the peptide fragment 45-54 and quercetin. It was demonstrated that the inability to detect the covalent quercetin-peptide adduct using LC-MS is due to the reversible nature of the adduct-formation in combination with rapid and preferential dimerization of the peptide fragment once liberated from the protein. Nevertheless, the results of the present study indicate that quinone-type oxidation products of quercetin likely act as specific active site inhibitors of GSTP1-1 by binding to cysteine 47.  相似文献   
94.
Summary.  Wistar rats were fed with different diets with or without supplement coenzyme Q10 (CoQ10) and with oil of different sources (sunflower or virgin olive oil) for six or twelve months. Ubiquinone contents (CoQ9 and CoQ10) were quantified in homogenates of livers and brains from rats fed with the four diets. In the brain, younger rats showed a 3-fold higher amount of ubiquinone than older ones for all diets. In the liver, however, CoQ10 supplementation increased the amount of CoQ9 and CoQ10 in both total homogenates and plasma membranes. Rats fed with sunflower oil as fat source showed higher amounts of ubiquinone content than those fed with olive oil, in total liver homogenates, but the total ubiquinone content in plasma membranes was similar with both fat sources. Older rats showed a higher amount of ubiquinone after diets supplemented with CoQ10. Two ubiquinone-dependent antioxidant enzyme activities were measured. NADH-ferricyanide reductase activity in hepatocyte plasma membranes was unaltered by ubiquinone accumulation, but this activity increased slightly with age. Both cytosolic and membrane-bound dicumarol-sensitive NAD(P)H:(quinone acceptor) oxidoreductase (DT-diaphorase, EC 1.6.99.2) activities were decreased by diets supplemented with CoQ10. Animals fed with olive oil presented lower DT-diaphorase activity than those fed with sunflower oil, suggesting that the CoQ10 antioxidant protection is strengthened by olive oil as fat source. Received May 22, 2002; accepted September 20, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba Edificio Severo Ochoa, Campus de Rabanales, 14071 Córdoba, Spain.  相似文献   
95.
A diterpene, cryptoquinone, was isolated from the bark of Cryptomeria japonica, the structure, 7,11,14-trioxoabieta-8,12-diene, was established by spectral analyses and X-ray crystallography. This diterpene quinone showed moderate antifungal activities against Pyricularia orizae and Alternaria alternata, and cytotoxic activity against mouse lymphoid neoplasm (P388) cells with an IC(50) of 0.26 microg/ml.  相似文献   
96.
Formation of quercetin quinone/quinone methide metabolites, reflected by formation of the glutathionyl quercetin adducts as authentic metabolites, was investigated in an in vitro cell model (B16F-10 melanoma cells). Results of the present study clearly indicate the formation of glutathionyl quercetin adducts in a tyrosinase-containing melanoma cell line, expected to be representative also for peroxidase-containing mammalian cells and tissues. The data obtained also support that the adducts are formed intracellular and subsequently excreted into the incubation medium and reveal for the first time evidence for the pro-oxidative metabolism of quercetin in a cellular in vitro model.  相似文献   
97.
Anaerobic consortia obtained from a wide variety of environments were tested for oxidizing several ecologically significant substrates with the humic model compound, anthraquinone-2,6-disulfonate (AQDS), as terminal electron acceptor. All the substrates, including hydrogen, acetate, propionate, methanol and lactate, were completely or partially converted to methane when bicarbonate was the only electron acceptor available. Addition of AQDS (20 mM) to the cultures prevented methanogenesis in most cases and AQDS reduction became the preferred pathway. AQDS was shown to be toxic for methanogenesis and this effect played an important role in enabling quinone-respiring bacteria to outcompete methanogens. Furthermore, AQDS respiration is thermodynamically more favorable than methanogenesis. All the consortia evaluated were capable of oxidizing hydrogen linked to the reduction of AQDS. Most inocula tested were also able to oxidize acetate and lactate in the same way. When methanol was provided as an electron donor competition between methanogenesis and acetogenesis occurred. Acetate accumulated from the latter process was responsible for quinone respiration. These results suggest that quinone-respiring bacteria are ubiquitous and that quinones in humus may significantly contribute to carbon cycling process by serving as a terminal electron acceptor for the anaerobic microbial oxidation of a wide variety of ecologically important substrates.  相似文献   
98.
This study investigated the effects of the internal recycling rate on nutrients removal in a sequential anoxic/anaerobic membrane bioreactor (SAM). Microbial community structure in sludge from the SAM was studied using quinone profile method. Above 98% COD, 68% nitrogen, and 55% phosphorus removal efficiencies were achieved when the internal recycling rate was 2.5 times influent flow. At that rate, the optimum specific nitrate loading rate and COD/NO(3)-N ratio were found to be 2.24 mgNO(3)-N g(-1) MLSS h(-1) and 9.13, respectively. Batch tests demonstrated that anoxic condition suppressed phosphorus release, and that denitrification was also influenced by initial substrate concentration. Denitrification appeared to have some priority over phosphorus release for substrate uptake. Microbial community analysis revealed a predominance of the subclass beta-Proteobacteria. Furthermore, it was found that Rhodocyclus-related bacteria were efficient at phosphorus removal than Actinobacteria.  相似文献   
99.
NRH:quinone oxidoreductase 2 (QR2) is a long forgotten oxidoreductive enzyme that metabolizes quinones and binds melatonin. We used the potency of the RNA interference (RNAi)-mediated gene silencing to build a cellular model in which the role of QR2 could be studied. Because standard approaches were poorly successful, we successively used: (1) two chemically synthesized fluorescent small interfering RNA (siRNA) duplexes designed and tested for their gene silencing capacity leading to a maximal 40% QR2 gene silencing 48h post-transfection; (2) double transfection and cell-sorting of high fluorescent siRNA-transfected HT22 cells further enhancing QR2 RNAi silencing to 88%; (3) stable QR2 knock-down HT22 cell lines established with H1and U6 promoter driven QR2 short hairpin RNA (shRNA) encoding vectors, resulting in a 71-80% reduction of QR2 enzymatic activity in both QR2 shRNA HT22 cells. Finally, as a first step in the study of this cellular model, we observed a 42-48% reduction of menadione/BNAH-mediated toxicity in QR2 shRNA cells compared to the wild-type HT22 cells. Although becoming widespread and in some cases effective, siRNA-mediated cellular knock-down proves in the present work to be of marginal efficiency. Much development is required for this technique to be of general application.  相似文献   
100.
CB1954 is a cancer pro-drug that can be activated through reduction by Escherichia coli nitro-reductases and quinone reductases. Human quinone reductase 2 is very efficient in the activation of CB1954, approximately 3000 times more efficient than human QR1 in terms of k(cat)/K(m). We have solved the three-dimensional structure of QR2 in complex with CB1954 to a nominal resolution of 1.5A. The complex structure indicates the essentiality of the two nitro groups: one nitro group forms hydrogen bonds with the side-chain of Asn161 of QR2 to hold the other nitro group in position for the reduction. We further conclude that residue 161, an Asn in QR2 and a His in QR1, is critical in differentiating the substrate specificities of these two enzymes. Mutation of Asn161 to His161 in QR2 resulted in the total loss of the enzymatic activity towards activation of CB1954, whereas the rates of reduction towards menadione are not altered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号