首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20815篇
  免费   389篇
  国内免费   283篇
  2023年   82篇
  2022年   150篇
  2021年   212篇
  2020年   179篇
  2019年   266篇
  2018年   302篇
  2017年   181篇
  2016年   214篇
  2015年   573篇
  2014年   1657篇
  2013年   1594篇
  2012年   1604篇
  2011年   2280篇
  2010年   1984篇
  2009年   944篇
  2008年   928篇
  2007年   836篇
  2006年   756篇
  2005年   647篇
  2004年   578篇
  2003年   582篇
  2002年   388篇
  2001年   243篇
  2000年   234篇
  1999年   280篇
  1998年   318篇
  1997年   277篇
  1996年   262篇
  1995年   302篇
  1994年   269篇
  1993年   224篇
  1992年   204篇
  1991年   187篇
  1990年   145篇
  1989年   169篇
  1988年   138篇
  1987年   122篇
  1986年   91篇
  1985年   154篇
  1984年   190篇
  1983年   160篇
  1982年   166篇
  1981年   87篇
  1980年   113篇
  1979年   81篇
  1978年   28篇
  1977年   31篇
  1976年   20篇
  1974年   14篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
大豆下胚轴可溶性蛋白中钙激活的蛋白激酶   总被引:6,自引:0,他引:6  
大豆(Glycine m ax L.) 下胚轴可溶性蛋白提取液进行自磷酸化,以SDS-PAGE电泳分析其标记产物时发现,当有较高浓度的Ca2+ 存在于反应液中时,有一条18 kD蛋白带被高强度标记,同时也可观察到另一条标记强度不高的67 kD蛋白带. 当反应时间延长到15 或30m in 时,它们的标记强度都逐渐减弱,最终从放射自显影底片上消失;在反应液中加入钙螯合剂EGTA 时,则只有67 kD 被高强度标记;在磷酸化反应过程中加入非标记ATP,蛋白中的32P逐渐被非标记磷取代,表明反应体系处于磷酸化-脱磷酸化的平衡过程中,并有结果显示这一过程是钙依赖性的. 组蛋白H1 可以使反应进程加快,表明提取液中的蛋白激酶可以利用它作为底物. 综合结果表明,18 kD和67 kD蛋白可能是具有自磷酸化能力且对Ca2+ 敏感的蛋白激酶,它们对Ca2+ 的不同反应,使得钙信号的传递更具可控性  相似文献   
22.
To establish a procedure for the purification of a broad spectrum of cell surface proteins, three separate methods based on different principles were compared with the aid of four marker proteins. Membrane preparation by sedimentation-flotation centrifugation, temperature-induced phase separation with Triton X-114, and lectin affinity chromatography were used separately as well as in combination. The two-step procedure of membrane preparation and lectin affinity chromatography provided by far the best enrichment of cell surface marker proteins. This result was further substantiated by screening greater than 6,600 hybridoma cultures that originated from mice that had been immunized with protein fractions obtained by different purification protocols. In addition, it was found that solubilized glycoproteins used as immunogens led to many more cell surface-specific monoclonal antibodies than glycoproteins immobilized on lectin-agarose beads. Three monoclonal antibodies that recognize distinct epitopes of cell adhesion molecules (CAMs) were isolated. Monoclonal antibody C4 bound to a detergent-labile epitope of G4 (neuron-glia CAM). Monoclonal antibody D1 recognized specifically nonreduced neural CAM (N-CAM) with intact disulfide bridges, and monoclonal antibody D3 recognized only the 180-kilodalton isoform of N-CAM. Because of these specificities, these monoclonal antibodies promise to be useful tools for the elucidation of the structural organization of adhesion molecules.  相似文献   
23.
The effect of the antibiotics thiostrepton and micrococcin on EF-Tu-catalyzed (ribosome-dependent) GTP hydrolysis in the presence of A-Phe, C-A-Phe, or C-C-A-Phe (related to the sequence of the 3′-terminus of aminoacyl-tRNA)(System I) or by methanol (‘uncoupled GTPase’, System II) was investigated. In System I, thiostrepton increases the binding affinities of the effectors to the EF-Tu·GTP·70 S ribosome complex, as well as the extent of the GTP hydrolysis, while the KGTPm is virtually unchanged. Similarly, in the uncoupled system (System II) and in the absence of effectors, thiostrepton significantly increases VGTPmax, whereas KGTPm remains unaffected. Micrococcin is without any effect in both systems. The ‘uncoupled GTPase’ (in System II) is also strongly inhibited by C-A-Phe. The results indicate the crucial role of the EF-Tu site which binds the aminoacylated C-C-A terminus of aminoacyl-tRNA in promoting GTP hydrolysis. It follows that the binding of the model effectors (such as C-C-A-Phe) to that site is favorably influenced by the interaction of thiostrepton with the 50 S ribosomal subunit, whereas thiostrepton, per se, does not influence the affinity of EF-Tu for GTP.  相似文献   
24.
Although several p53–Mdm2-binding disruptors have been identified to date, few studies have been published on p53–Mdmx-interaction inhibitors. In the present study, we demonstrated that o-aminothiophenol derivatives with molecular weights of 200–300 selectively inhibited the p53–Mdmx interaction. S-2-Isobutyramidophenyl 2-methylpropanethioate (K-178) (1c) activated p53, up-regulated the expression of its downstream genes such as p21 and Mdm2, and preferentially inhibited the growth of cancer cells with wild-type p53 over those with mutant p53. Furthermore, we found that the S-isobutyryl-deprotected forms 1b and 3b of 1c and S-2-benzamidophenyl 2-methylpropanethioate (K-181) (3c) preferentially inhibited the p53–Mdmx interaction over the p53–Mdm2 interaction, respectively, by using a Flag-p53 and glutathione S-transferase (GST)-fused protein complex (Mdm2, Mdmx, DAPK1, or PPID). In addition, the interaction of p53 with Mdmx was lost by replacing a sulfur atom with an oxygen atom in 1b and 1c. These results suggest that sulfides such as 1b, 3b, 4b, and 5b interfere with the binding of p53–Mdmx, resulting in the dissociation of the two proteins. Furthermore, the results of oral administration experiments using xenografts in nude mice indicated that 1c reduced the volume of tumor masses to 49.0% and 36.6% that of the control at 100 mg/kg and 150 mg/kg, respectively, in 40 days.  相似文献   
25.
The membrane localization of the plasma membrane Ca2+-ATPase isoform 2 (PMCA2) in polarized cells is determined by alternative splicing; the PMCA2w/b splice variant shows apical localization, whereas the PMCA2z/b and PMCA2x/b variants are mostly basolateral. We previously reported that PMCA2b interacts with the PDZ protein Na+/H+ exchanger regulatory factor 2 (NHERF2), but the role of this interaction for the specific membrane localization of PMCA2 is not known. Here we show that co-expression of NHERF2 greatly enhanced the apical localization of GFP-tagged PMCA2w/b in polarized Madin-Darby canine kidney cells. GFP-PMCA2z/b was also redirected to the apical membrane by NHERF2, whereas GFP-PMCA2x/b remained exclusively basolateral. In the presence of NHERF2, GFP-PMCA2w/b co-localized with the actin-binding protein ezrin even after disruption of the actin cytoskeleton by cytochalasin D or latrunculin B. Surface biotinylation and fluorescence recovery after photobleaching experiments demonstrated that NHERF2-mediated anchorage to the actin cytoskeleton reduced internalization and lateral mobility of the pump. Our results show that the specific interaction with NHERF2 enhances the apical concentration of PMCA2w/b by anchoring the pump to the apical membrane cytoskeleton. The data also suggest that the x/b splice form of PMCA2 contains a dominant lateral targeting signal, whereas the targeting and localization of the z/b form are more flexible and not fully determined by intrinsic sequence features.  相似文献   
26.
Abstract Saccharomyces cerevisiae was inoculated into a yeast nitrogen base with either glycerol or glucose as carbon source. Cell proliferation was followed by colony counts on agar medium. Cells in the glycerol-supplemented medium divided less than once in 10 days. When glucose, 6-deoxy-glucose or protoporphyrin IX was added, the cells had doubling times of about 24 h and increased in number to about 0.5 × 106 cells ml−1 Addition of either of the protein kinase C activators oleoyl-acetylglycerol or phorbol-12-myristate-13-acetate did not activate cell proliferation in the glycerol medium. However, when (i) glucose was combined with either protoporphyrin IX or chlorophyllin, or (ii) either protoporphyrin IX or chlorophyllin was combined with either of the protein kinase C activators, the cells had doubling times of about 12 h. Hence, (i) glucose can act as both a carbon source and a signalling molecule for proliferation, and (ii) two systems are involved in activating cell proliferation in S. cerevisiae : one operating through a protein kinase C system and another through a guanylate cyclase system.  相似文献   
27.
28.
Abstract Azide, an inhibitor of ATPase, and a specific inhibitor of protein export was used in order to select for protein secretion mutants in Acinetobacter calcoaceticus A2. Two such mutants were isolated that were azide-resistant and defective in the general protein transport system. The mutation also conferred additional phenotypic changes, including an inability to grow on minimal media or at 40°C. The existence of protein secretion mutants with a selectable phenotype may be useful for the genetic study of protein export.  相似文献   
29.
Chloroflexus aurantiacus can be induced to shift from respiratory to photosynthetic energy production by introducing light and/or lowering the oxygen concentration of a culture. After induction, cells synthesize bacteriochlorophyll and proteins for the formation of a functional photosynthetic apparatus. Bacteriochlorophyll is detectable within 2 h after induction. Chlorosome polypeptides are detected after 8–12 h. Two proteins, Mr 60,000 and Mr 47,000, are present in both induced and noninduced cells and react specifically with antibodies against chlorosome polypeptides. Immunological data suggest that these proteins (Mr 60,000 and 47,000) are polyproteins which are transcribed and translated in the dark. When cells are exposed to light or low oxygen tension these proteins are processed into functional polypeptides required in the assembly of the chlorosome. The reaction center polypeptide (Mr 26,000) appears to be part of a separate genetic control system.Dedicated to Prof. G. Drews on occasion of his 60th birthday  相似文献   
30.
Corticosterone, the major stress hormone, plays an important role in regulating neuronal functions of the limbic system, although the cellular targets and molecular mechanisms of corticosteroid signaling are largely unknown. Here we show that a short treatment of corticosterone significantly increases α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission and AMPAR membrane trafficking in pyramidal neurons of prefrontal cortex, a key region involved in cognition and emotion. This enhancing effect of corticosterone is through a mechanism dependent on Rab4, the small GTPase-controlling receptor recycling between early endosome and plasma membrane. Guanosine nucleotide dissociation inhibitor (GDI), which regulates the cycle of Rab proteins between membrane and cytosol, forms an increased complex with Rab4 after corticosterone treatment. Corticosterone also triggers an increased GDI phosphorylation at Ser-213 by the serum- and glucocorticoid-inducible kinase (SGK). Moreover, AMPAR synaptic currents and surface expression and their regulation by corticosterone are altered by mutating Ser-213 on GDI. These results suggest that corticosterone, via SGK phosphorylation of GDI at Ser-213, increases the formation of GDI-Rab4 complex, facilitating the functional cycle of Rab4 and Rab4-mediated recycling of AMPARs to the synaptic membrane. It provides a potential mechanism underlying the role of corticosteroid stress hormone in up-regulating excitatory synaptic efficacy in cortical neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号