首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   0篇
  2023年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2011年   1篇
  2009年   9篇
  2008年   10篇
  2007年   8篇
  2006年   5篇
  2005年   1篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1981年   2篇
  1978年   1篇
排序方式: 共有79条查询结果,搜索用时 171 毫秒
31.
Food chain theory provides explicit predictions for equilibrium biomasses among trophic levels in food chains of different lengths. Empirical studies on freshwater benthic food chains have typically been performed on chains with up to three levels and in field experiments with limited spatial and temporal scale. Here we use a natural snapshot experiment approach to study equilibrium biomass and abundance among trophic levels in natural ponds differing only with respect to fish assemblage structure. Forty-four ponds were surveyed for their densityand biomass of fish, snails and periphyton. Ponds were divided into three categories based on fish assemblage: ponds with no fish (two trophic levels), ponds with molluscivorous fish (three trophic levels) and ponds that also had piscivorous fish (four trophic levels). Ponds without fish had a high density and biomass of snails and a low biomass of periphyton, whereas snails were scarce and periphyton biomass was high in ponds with molluscivorous fish. In the presence of piscivores, molluscivore populations consisted of low numbers of large individuals. Snail assemblages in piscivore ponds were characterised by relativelyhigh densities of small-bodied detritivorous species and periphyton biomass was not significantlydifferent from ponds with three trophic levels. Thus, predictions from classic food chain theory were upheld in ponds with up to three trophic levels. In ponds with four trophic levels, however, there was a decoupling of the trophic cascade at the piscivore-molluscivore level. Gape-limited piscivory, predation on snails by molluscivores that have reached an absolute size refuge from predation, and changes in food preferences of the dominant snails are suggested to explain the observed patterns.  相似文献   
32.
We sampled periphyton communities in a highly productive stream to characterize how longitudinal changes in watershed geology and land use affect periphyton nutrient status and elemental composition. Nutrient status was evaluated from measures of periphyton nutrient composition (carbon, nitrogen, and phosphorus), stable isotope signatures (δ15N and δ13C), and the response of periphyton to experimental enrichment with nitrogen. Biomass and nutrient content increased dramatically from the headwaters to downstream, while tissue nutrient ratios (C:P and C:N) were more consistent and did not indicate strong N- or P-limitation. Nitrogen enrichment experiments did not exhibit a consistent response upstream or downstream, and periphyton C:N:P stoichiometry showed no significant response to N-enrichment. Absolute densities of periphyton N were 5- to 90-fold greater than the overlying N concentrations in stream water (159- to 353-fold greater for P), and the δ15N signal indicates downstream enrichment from likely watershed sources (urban and agriculture land-use). These results suggest that periphyton in Spring Creek are not N-limited and store large quantities of both N and P, which in turn can be transported downstream during high flow events. Handling editor: David Hamilton  相似文献   
33.
SUMMARY

The preservation technique of critical point drying for use with the scanning electron microscope is described. A study of the periphyton community development on the aquatic macrophyte, Potamogeton pectinatus L. from the littoral zone of Swartvlei, southern Cape Province, is used to illustrate the high degree of resolution achieved using this method.  相似文献   
34.
35.
We examined the high-resolution temporal dynamics of recovery of dried periphyton crusts following rapid rehydration in a phosphorus (P)-limited short hydroperiod Everglades wetland. Crusts were incubated in a greenhouse in tubs containing water with no P or exogenous algae to mimic the onset of the wet season in the natural marsh when heavy downpours containing very low P flood the dry wetland. Algal and bacterial productivity were tracked for 20 days and related to compositional changes and P dynamics in the water. A portion of original crusts was also used to determine how much TP could be released if no biotic recovery occurred. Composition was volumetrically dominated by cyanobacteria (90%) containing morphotypes typical of xeric environments. Algal and bacterial production recovered immediately upon rehydration but there was a net TP loss from the crusts to the water in the first 2 days. By day 5, however, cyanobacteria and other bacteria had re-absorbed 90% of the released P. Then, water TP concentration reached a steady-state level of 6.6 μg TP/L despite water TP concentration through evaporation. Phosphomonoesterase (PMEase) activity was very high during the first day after rehydration due to the release of a large pre-existing pool of extracellular PMEase. Thereafter, the activity dropped by 90% and increased gradually from this low level. The fast recovery of desiccated crusts upon rehydration required no exogenous P or allogenous algae/bacteria additions and periphyton largely controlled P concentration in the water.  相似文献   
36.
We studied the recovery of periphyton and macroinvertebrate communities in a second order stream after a month-long spate that began as increased discharge due to snowmelt in April 2000 but continued through May as a result of frequent rainstorms. We sampled macroinvertebrates and periphyton in June 2000 at three different sites—an upstream site in a conifer tree plantation, a second site ca. 800 m downstream in a mixed hardwood forest, and a third site ca. 1.4 km downstream where there was an open canopy. Periphyton abundance was low on 6 June at all sites but increased 10-fold at the open canopy site the following week (13 June), appearing as a thick mat of Ulothrix. By 26 June, periphyton biomass (as both chlorophyll a and ash free dry mass) had decreased by 80% whereas densities of Chironomidae increased 50-fold and Baetidae increased 4-fold at the open canopy site; little change had occurred in periphyton and macroinvertebrate communities at the forested sites from early to late June. Our results suggest that baetids and chironomids rapidly responded to the increased algal resource at the open canopy site due to their life history characteristics and high growth rates. Chironomids decreased the green mat of Ulothrix by using this alga in tube construction and both chironomids and baetids likely consumed this alga. The varied responses of the periphyton and macroinvertebrate communities at the forested versus open sites demonstrate a resistance to impacts by floods at the forested sites, whereas at the open canopy site periphyton and macroinvertebrate communities were more resilient to the flood disturbance. Handling editor: R. Bailey  相似文献   
37.
Spatio-temporal variation of plant populations often can demonstrate synchronous patterns, particularly within highly connected landscapes. Periphyton biomass (chlorophyll a) and net accumulation were measured at five sites in a spring-fed fourth-order stream located in central Pennsylvania with a mixed land-uses watershed (Spring Creek, USA) to characterize longitudinal variation within the stream. Samples were collected at three-week intervals over one year to describe seasonal patterns of periphyton biomass and net production (n = 17 per site). Spring Creek periphyton biomass and net accumulation increased dramatically from the headwaters to downstream (range 10–1,000 mg/m2). The downstream reaches had exceptionally large algal biomass (chlorophyll a > 300 mg/m2) and potential for rapid turnover. Varying degrees of seasonality were observed among the sites, with upstream sites showing more temporal variation but no distinct seasonal pattern. Despite this, large-scale disturbances within the watershed seem to promote synchrony among sites throughout the stream as reflected by close correlations in chlorophyll values (Pearson correlation coefficient r > 0.50).  相似文献   
38.
Restoration of the Everglades requires reduction of total phosphorus (TP) in the influent run-off from the Everglades agricultural area (EAA). The Everglades nutrient removal project tested phosphorus (P) - removal efficiencies of several treatment wetland cells. The best TP reduction has occurred within the submersed aquatic vegetation (SAV) - dominated treatment Cell 4. A significant proportion of the P reduction in Cell 4 over several years has been in the form of particulate P (PP). This study was conducted to (i) determine and compare the components of suspended solids in the Cell 4 influent and effluent waters, and (ii) investigate associations between PP and individual particulate components. Identification and quantification of components were accomplished using X-ray diffraction, thermogravimetry, scanning electron microscopy, and energy dispersive X-ray elemental analysis. The dominant particulate components in the Cell 4 water column are organic matter (OM), biogenic Si (predominantly diatom frustules), and calcite. Concentrations of PP, suspended solids, and particulate OM were greater at the Cell 4 inflow than at the outflow; consistent differences between particulate calcite in the influent vs. the effluent were not found. PP was positively correlated with particulate OM, but was not correlated with calcite. Data suggest that particulate OM, including microbial cells, plays an important role in P transport from the EAA. Possibly, a shift from planktonic to periphytic microbial distribution contributes to PP reduction. The importance of planktonic organisms as vectors of P in Everglades water warrants further study.  相似文献   
39.
Natural alkalinity generation by microbial sulphate reduction in acidic lakes is usually inhibited by the low pH and a low primary production which results in a lack of suitable organic carbon sources. In some acidic mining lakes mass developments of filamentous benthic algae occur. The effects of this periphyton layer on the biogeochemistry of the sediment–water interface were investigated by in situ microsensor measurements and laboratory incubations in Mining Lake Grünewalder Lauch (Germany). Microsensor measurements showed that the oxic–anoxic boundary was located in the periphyton layer and was moving up and down depending on light triggered photosynthesis. The sediment itself was permanently anoxic. The diurnal redox shift and the maintenance of neutral conditions in the periphyton layer lead to an effective precipitation of iron and phosphorus. Under the periphyton layer very high sulphate reduction rates up to 265 nmol cm−3 d−1 were measured in the sediment. These are the highest rates reported for mining lakes so far. The microbial activity was high enough to keep the pH in the surface sediment neutral and contributed to natural alkalinity production. Handling editor: L. Naselli-Flores  相似文献   
40.
Biomanipulation of eutropicated peaty lakes has rarely been successful; clear water with dense macrophyte stands fails to develop in most cases. It was unclear whether (1) high turbidity due to resuspension by benthivorous fish or wind is the major cause of low macrophyte density or whether (2) the establishment of submerged macrophyte stands is prevented by a lack of propagules, low cohesive strength of the lake sediment, high concentrations of phytotoxics, grazing by waterfowl and/or shading by periphyton growth. These hypotheses were tested in an experiment in a shallow peat lake in the Netherlands (Terra Nova). Removal of fish from a 0.5 ha experimental site resulted in clear water and the development of a dense (90% coverage) and species-rich (10 species) submerged vegetation. At a fish-stocked site and a control site the water remained turbid and dense macrophyte stands did not develop. The establishment of submerged macrophytes appeared not to be limited by a lack of propagules. Introduced plants grew poorly in turbid water, but very well in clear water. Exclosures showed that bird grazing reduced the plant biomass. In clear water grazing seemed to enhance the vegetation diversity. Periphyton development did not prevent plant growth in clear water. After the experiment, the fish stock was greatly reduced in the whole lake (85 ha), to test if (3) in a large lake, submerged macrophyte stands will not develop after biomanipulation. In the first season after fish reduction, transparency increased and species-rich submerged macrophyte stands developed, covering 60% of the shallow parts of the lake. Most of the species known to have occurred in the past re-established. The results indicate that high turbidity caused by benthivorous fish in combination with bird grazing were the major causes of the absence of submerged macrophyte stands in this lake. Abiotic conditions after the clearing of the lake were suitable for the growth of macrophytes. We infer that the restoration potential of submerged macrophyte stands in eutrophicated peaty lakes can be high, and results can be obtained quickly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号