首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1593篇
  免费   369篇
  国内免费   39篇
  2024年   8篇
  2023年   54篇
  2022年   60篇
  2021年   107篇
  2020年   129篇
  2019年   152篇
  2018年   79篇
  2017年   91篇
  2016年   89篇
  2015年   85篇
  2014年   105篇
  2013年   137篇
  2012年   114篇
  2011年   98篇
  2010年   57篇
  2009年   43篇
  2008年   44篇
  2007年   68篇
  2006年   50篇
  2005年   34篇
  2004年   47篇
  2003年   34篇
  2002年   20篇
  2001年   25篇
  2000年   45篇
  1999年   28篇
  1998年   27篇
  1997年   22篇
  1996年   26篇
  1995年   17篇
  1994年   10篇
  1993年   19篇
  1992年   10篇
  1991年   9篇
  1990年   1篇
  1989年   14篇
  1988年   7篇
  1987年   8篇
  1986年   6篇
  1985年   5篇
  1984年   3篇
  1983年   7篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有2001条查询结果,搜索用时 31 毫秒
21.
观察为期4周模拟失重对大鼠心肌收缩性能与收缩蛋白性质的影响,发现模拟失重大鼠左心室乳头肌等长收缩的力学特征发生下列变化:发展张力峰值降低29%(P〈0.01);达到张力峰值的时间延长10%(P〈0.05);舒张一半的时间缩短11%,但未达到显著水平(P〉0.05)。心肌力学参数的这些变化表明模拟失重使大鼠心肌收缩性能降低。进一步研究显示,模拟失重大鼠左室心肌肌原纤维Ca^2+,Mg^2+-ATP酶  相似文献   
22.
在15只戊巴比妥钠麻醉的开胸狗身上观察高渗溶液对血流动力学的影响,主要结果如下:1.静脉内注射50%葡萄糖溶液(3m1/kg,15s 内注毕),规律地引起心动徐缓、动脉血压降低、左心室(-dp/dt)减小、左心室 dp/dt 和心输出量增加,以及肾和股薄肌的血流阻力降低。25%甘露醇溶液具有类似作用。2.切断两侧颈迷走神经后,注射高渗溶液不再能诱发动脉低血压以及肾和股薄肌血流阻力的反射性降低,提示此类效应的传入通路主要为迷走神经。3.在切断迷走神经后注射高渗溶液,还使左心室 dp/dt 进一步增加,表明高渗溶液增强心肌收缩性。根据以上结果似可认为,静脉注射高渗溶液所致动脉血压降低,实质上反映着心输出量的增加不足以抵销外周阻力的减小。  相似文献   
23.
24.
Pre-clinical studies have indicated that mitoprotective drugs may add cardioprotection beyond rapid revascularization, antiplatelet therapy and risk modification. We review the clinical efficacy of mitoprotective drugs that have progressed to clinical testing comprising cyclosporine A, KAI-9803, MTP131 and TRO 40303. Whereas cyclosporine may reduce infarct size in patients undergoing primary angioplasty as evaluated by release of myocardial ischaemic biomarkers and infarct size imaging, the other drugs were not capable of demonstrating this effect in the clinical setting. The absent effect leaves the role of the mitochondrial permeability transition pore for reperfusion injury in humans unanswered and indicates that targeting one single mechanism to provide mitoprotection may not be efficient. Moreover, the lack of effect may relate to favourable outcome with current optimal therapy, but conditions such as age, sex, diabetes, dyslipidaemia and concurrent medications may also alter mitochondrial function. However, as long as the molecular structure of the pore remains unknown and specific inhibitors of its opening are lacking, the mitochondrial permeability transition pore remains a target for alleviation of reperfusion injury. Nevertheless, taking conditions such as ageing, sex, comorbidities and co-medication into account may be of paramount importance during the design of pre-clinical and clinical studies testing mitoprotective drugs.  相似文献   
25.
Vascular endothelial growth factor (VEGF) is a well‐known angiogenic factor, however its ability in promoting therapeutic angiogenesis following myocardial infarction (MI) is limited. Here, we aimed to investigate whether dual treatment with insulin‐like growth factor binding protein‐4 (IGFBP‐4), an agent that protects against early oxidative damage, can be effective in enhancing the therapeutic effect of VEGF following MI. Combined treatment with IGFBP‐4 enhanced VEGF‐induced angiogenesis and prevented cell damage via enhancing the expression of a key angiogenic factor angiopoietin‐1. Dual treatment with the two agents synergistically decreased cardiac fibrosis markers collagen‐I and collagen‐III following MI. Importantly, while the protective action of IGFBP‐4 occurs at an early stage of ischemic injury, the action of VEGF occurs at a later stage, at the onset angiogenesis. Our findings demonstrate that VEGF treatment alone is often not enough to protect against oxidative stress and promote post‐ischemic angiogenesis, whereas the combined treatment with IGFBP4 and VEGF can utilize the dual roles of these agents to effectively protect against ischemic and oxidative injury, and promote angiogenesis. These findings provide important insights into the roles of these agents in the clinical setting, and suggest new strategies in the treatment of ischemic heart disease.  相似文献   
26.
Intracoronary application of nicorandil can effectively reduce the myocardial no‐reflow (MNR) after percutaneous coronary intervention (PCI). We sought to investigate the mechanisms of nicorandil in preventing MNR, besides that of dilating the coronary microvasculature. A total of 60 patients undergoing PCI were enrolled and randomly divided into a nicorandil group and a control group. Before PCI, 2 mg of nicorandil or an equal volume of normal saline was injected into the coronary artery. Blood samples were collected before, 24 hours and 1 week after PCI and inflammatory cytokines were tested. In the control group, the expression of pro‐inflammatory cytokines was significantly increased, while the anti‐inflammatory cytokines were decreased 24 hours after PCI. In contrast, these changes were reversed in the nicorandil group, indicating that nicorandil regulated the inflammatory response induced by PCI. Then, proteomic analysis was performed to further elucidate the potential mechanisms. A total of 53 differentially expressed proteins (DEPs) were found 24 hours after PCI in the control group, and the changes of these relevant genes were reversed in the nicorandil group. These DEPs were significantly enriched in the inflammatory pathways. In conclusion, the intracoronary application of nicorandil before PCI can regulate the inflammatory responses induced by PCI, which might be an important mechanism of nicorandil in preventing MNR.  相似文献   
27.
The current standard biomarker for myocardial infarction (MI) is high‐sensitive troponin. Although powerful in clinical setting, search for new markers is warranted as early diagnosis of MI is associated with improved outcomes. Extracellular vesicles (EVs) attracted considerable interest as new blood biomarkers. A training cohort used for diagnostic modelling included 30 patients with STEMI, 38 with stable angina (SA) and 30 matched‐controls. Extracellular vesicle concentration was assessed by nanoparticle tracking analysis. Extracellular vesicle surface‐epitopes were measured by flow cytometry. Diagnostic models were developed using machine learning algorithms and validated on an independent cohort of 80 patients. Serum EV concentration from STEMI patients was increased as compared to controls and SA. EV levels of CD62P, CD42a, CD41b, CD31 and CD40 increased in STEMI, and to a lesser extent in SA patients. An aggregate marker including EV concentration and CD62P/CD42a levels achieved non‐inferiority to troponin, discriminating STEMI from controls (AUC = 0.969). A random forest model based on EV biomarkers discriminated the two groups with 100% accuracy. EV markers and RF model confirmed high diagnostic performance at validation. In conclusion, patients with acute MI or SA exhibit characteristic EV biomarker profiles. EV biomarkers hold great potential as early markers for the management of patients with MI.  相似文献   
28.
Myocardial infarction (MI) remains the leading cause of morbidity and mortality worldwide, and novel therapeutic targets still need to be investigated to alleviate myocardial injury and the ensuing maladaptive cardiac remodelling. Accumulating studies have indicated that lncRNA H19 might exert a crucial regulatory effect on cardiovascular disease. In this study, we aimed to explore the biological function and molecular mechanism of H19 in MI. To investigate the biological functions of H19, miRNA‐22‐3p and KDM3A, gain‐ and loss‐of‐function experiments were performed. In addition, bioinformatics analysis, dual‐luciferase reporter assays, RNA immunoprecipitation (RIP) assays, RNA pull‐down assays, quantitative RT‐PCR and Western blot analyses as well as rescue experiments were conducted to reveal an underlying competitive endogenous RNA (ceRNA) mechanism. We found that H19 was significantly down‐regulated after MI. Functionally, enforced H19 expression dramatically reduced infarct size, improved cardiac performance and alleviated cardiac fibrosis by mitigating myocardial apoptosis and decreasing inflammation. However, H19 knockdown resulted in the opposite effects. Bioinformatics analysis and dual‐luciferase assays revealed that, mechanistically, miR‐22‐3p was a direct target of H19, which was also confirmed by RIP and RNA pull‐down assays in primary cardiomyocytes. In addition, bioinformatics analysis and dual‐luciferase reporter assays also demonstrated that miRNA‐22‐3p directly targeted the KDM3A gene. Moreover, subsequent rescue experiments further verified that H19 regulated the expression of KDM3A to ameliorate MI‐induced myocardial injury in a miR‐22‐3p‐dependent manner. The present study revealed the critical role of the lncRNAH19/miR‐22‐3p/KDM3A pathway in MI. These findings suggest that H19 may act as a potential biomarker and therapeutic target for MI.  相似文献   
29.
In this study, we investigated the effects of isorhamnetin on myocardial ischaemia reperfusion (I/R) injury in Langendorff-perfused rat hearts. Isorhamnetin treatment (5, 10 and 20 μg/mL) significantly alleviated cardiac morphological injury, reduced myocardial infarct size, decreased the levels of marker enzymes (LDH and CK) and improved the haemodynamic parameters, reflected by the elevated levels of the left ventricular developed pressure (LVDP), coronary flow (CF) and the maximum up/down velocity of left ventricular pressure (+dp/dtmax). Moreover, isorhamnetin reperfusion inhibited apoptosis of cardiomyocytes in the rats subjected to cardiac I/R in a dose-dependent manner concomitant with decreased protein expression of Bax and cleaved-caspase-3, as well as increased protein expression of Bcl-2. In addition, I/R-induced oxidative stress was manifestly mitigated by isorhamnetin treatment, as showed by the decreased malondialdehyde (MDA) level and increased antioxidant enzymes activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). These results indicated that isorhamnetin exerts a protective effect against I/R-induced myocardial injury through the attenuation of apoptosis and oxidative stress.  相似文献   
30.
目的:急性前壁心肌梗死明显影响室间隔收缩率和左心室射血分数(left ventricular ejection fraction LVEF)。本文旨在探讨心肌带降段及升段收缩率与急性前壁心肌梗死患者LVEF的相关性。方法:收集2015年4月-2017年2月在心内科住院的急性前壁心肌梗死患者36例,正常对照组患者39例。所有患者取左心室长轴M型超声心动图,测量室间隔收缩率、升段收缩率及降段收缩率。心肌梗死左心室射血分数采用双平面Simpson's法计算。结果:与正常对照组相比,心肌梗死组患者舒张末期心肌带升段厚度没有统计学差异(P=0.69),收缩末期升段厚度(P=0.014)更薄、升段收缩率(P0.01)明显降低;心肌梗死组舒张末期降段厚度(P0.01)更薄、收缩末期降段厚度(P0.01)更薄、降段收缩率(P0.01)明显降低;心肌梗死组左心室射血分数与降段收缩率(r~2=0.13,P=0.026)、室间隔增厚率(r~2=0.19,P0.01)呈正相关,与升段收缩率没有相关性(P0.05)。正常对照组左心室射血分数与室间隔增厚率、降段增厚率及升段增厚率无相关性。经过相关分析,筛选出与心肌梗死LVEF的相关因素,进一步经逐步回归分析,得多元线性回归方程为LVEF=48.206+18.914*LVDD(cm)-25.414*LVSD(cm)。结论:急性前壁心肌梗死室间隔降段收缩率明显受损,与左心室射血分数降低有关。多元线性回归方程可估算前壁心肌梗死LVEF。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号