首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7669篇
  免费   567篇
  国内免费   160篇
  2023年   59篇
  2022年   79篇
  2021年   110篇
  2020年   166篇
  2019年   232篇
  2018年   250篇
  2017年   180篇
  2016年   167篇
  2015年   176篇
  2014年   365篇
  2013年   429篇
  2012年   263篇
  2011年   304篇
  2010年   200篇
  2009年   258篇
  2008年   280篇
  2007年   356篇
  2006年   276篇
  2005年   279篇
  2004年   199篇
  2003年   190篇
  2002年   170篇
  2001年   107篇
  2000年   101篇
  1999年   100篇
  1998年   120篇
  1997年   84篇
  1996年   83篇
  1995年   76篇
  1994年   86篇
  1993年   97篇
  1992年   79篇
  1991年   76篇
  1990年   71篇
  1989年   76篇
  1988年   63篇
  1987年   60篇
  1986年   56篇
  1985年   158篇
  1984年   296篇
  1983年   235篇
  1982年   280篇
  1981年   268篇
  1980年   177篇
  1979年   173篇
  1978年   146篇
  1977年   120篇
  1976年   68篇
  1975年   48篇
  1973年   40篇
排序方式: 共有8396条查询结果,搜索用时 62 毫秒
991.
We demonstrate, using transmission electron microscopy and immunopurification with an antibody specific for RNA/DNA hybrid, that intact mitochondrial DNA replication intermediates are essentially duplex throughout their length but contain extensive RNA tracts on one strand. However, the extent of preservation of RNA in such molecules is highly dependent on the preparative method used. These findings strongly support the strand-coupled model of mitochondrial DNA replication involving RNA incorporation throughout the lagging strand.  相似文献   
992.
Aggregation of the amyloid-β (Aβ) peptide is considered a central event in the pathogenesis of Alzheimer's disease (AD). In order to bypass methodological bias related to a variety of impurities commonly present in typical preparations of synthetic Aβ, we developed a simple, generally applicable method for recombinant production of human Aβ and Aβ variants in Escherichia coli that provides milligram quantities of Aβ in very high purity and yield. Amyloid fibril formation in vitro by human Aβ1-42, the key amyloidogenic Aβ species in AD, was completed threefold faster with recombinant Aβ1-42 compared to synthetic preparations. In addition, recombinant Aβ1-42 was significantly more toxic to cultured rat primary cortical neurons, and it was more toxic in vivo, as shown by strongly increased induction of abnormal phosphorylation of tau and tau aggregation into neurofibrillary tangles in brains of P301L tau transgenic mice. We conclude that even small amounts of impurities in synthetic Aβ—including a significant fraction of racemized peptides that cannot be avoided due to the technical limitations of peptide synthesis—prevent or slow Aβ incorporation into the regular quaternary structure of growing β-amyloid fibrils. The results validate the use of recombinant Aβ1-42 for both in vitro and in vivo studies addressing the mechanisms underlying Aβ aggregation and its related biological consequences for the pathophysiology, therapy, and prevention of AD.  相似文献   
993.
Yeast Saccharomyces cerevisiae MTO2, MTO1, and MSS1 genes encoded highly conserved tRNA modifying enzymes for the biosynthesis of carboxymethylaminomethyl (cmnm)5s2U34 in mitochondrial tRNALys, tRNAGlu, and tRNAGln. In fact, Mto1p and Mss1p are involved in the biosynthesis of the cmnm5 group (cmnm5U34), while Mto2p is responsible for the 2-thiouridylation (s2U34) of these tRNAs. Previous studies showed that partial modifications at U34 in mitochondrial tRNA enabled mto1, mto2, and mss1 strains to respire. In this report, we investigated the functional interaction between MTO2, MTO1, and MSS1 genes by using the mto2, mto1, and mss1 single, double, and triple mutants. Strikingly, the deletion of MTO2 was synthetically lethal with a mutation of MSS1 or deletion of MTO1 on medium containing glycerol but not on medium containing glucose. Interestingly, there were no detectable levels of nine tRNAs including tRNALys, tRNAGlu, and tRNAGln in mto2/mss1, mto2/mto1, and mto2/mto1/mss1 strains. Furthermore, mto2/mss1, mto2/mto1, and mto2/mto1/mss1 mutants exhibited extremely low levels of COX1 and CYTB mRNA and 15S and 21S rRNA as well as the complete loss of mitochondrial protein synthesis. The synthetic enhancement combinations likely resulted from the completely abolished modification at U34 of tRNALys, tRNAGlu, and tRNAGln, caused by the combination of eliminating the 2-thiouridylation by the mto2 mutation with the absence of the cmnm5U34 by the mto1 or mss1 mutation. The complete loss of modifications at U34 of tRNAs altered mitochondrial RNA metabolisms, causing a degradation of mitochondrial tRNA, mRNA, and rRNAs. As a result, failures in mitochondrial RNA metabolisms were responsible for the complete loss of mitochondrial translation. Consequently, defects in mitochondrial protein synthesis caused the instability of their mitochondrial genomes, thus producing the respiratory-deficient phenotypes. Therefore, our findings demonstrated a critical role of modifications at U34 of tRNALys, tRNAGlu, and tRNAGln in maintenance of mitochondrial genome, mitochondrial RNA stability, translation, and respiratory function.  相似文献   
994.
A novel adapter-directed phage display system was developed with modular features. In this system, the target protein is expressed as a fusion protein consisting of adapter GR1 from the phagemid vector, while the recombinant phage coat protein is expressed as a fusion protein consisting of adapter GR2 in the helper phage vector. Surface display of the target protein is accomplished through specific heterodimerization of GR1 and GR2 adapters, followed by incorporation of the heterodimers into phage particles. A series of engineered helper phages were constructed to facilitate both display valency and formats, based on various phage coat proteins. As the target protein is independent of a specific phage coat protein, this modular system allows the target protein to be displayed on any given phage coat protein and allows various display formats from the same vector without the need for reengineering. Here, we demonstrate the shuttling display of a single-chain Fv antibody on phage surfaces between multivalent and monovalent formats, as well as the shuttling display of an antigen-binding fragment molecule on phage coat proteins pIII, pVII, and pVIII using the same phagemid vectors combined with different helper phage vectors. This adapter-directed display concept has been applied to eukaryotic yeast surface display and to a novel cross-species display that can shuttle between prokaryotic phage and eukaryotic yeast systems.  相似文献   
995.
The crystallisation of dichloro-bis(2,4-lutidine)-zinc from various solvents (e.g. ethanol, THF and 2,4-lutidine) has been investigated and two phases were isolated. The structures of both phases were determined by single crystal X-ray diffraction and both types of crystals were found to be composed of conformationally chiral molecules. One phase (α-1) is racemic and crystallises in space group P21/c, while the other phase (β-1) crystallises in the enantiomorphous space group P41212 with a low Flack parameter. In a few cases the chiral and racemic phases crystallised concomitantly; this phenomenon is rare and can be useful in the development of tools for the prediction of crystal structures.  相似文献   
996.
Bcl‐xL, a member of the Bcl‐2 family, is known to inhibit apoptosis of recombinant Chinese hamster ovary (rCHO) cells induced by the addition of sodium butyrate (NaBu), which is used for the elevated expression of recombinant protein. In order to understand the intracellular effects of Bcl‐xL overexpression on CHO cells treated with NaBu, changes to the proteome caused by controlled Bcl‐xL expression in rCHO cells producing erythropoietin (EPO) in the presence of 3 mM NaBu were evaluated using two‐dimensional differential in‐gel electrophoresis (2D‐DIGE) and MS analysis. The consequences of Bcl‐xL overexpression were not limited to the apoptotic signaling pathway. Out of eight proteins regulated significantly by Bcl‐xL overexpression in 3 mM NaBu addition culture, four proteins were related to cell survival (Iq motif‐containing GTPase‐activating protein 1), cell proliferation (dihydrolipoamide‐S‐acetyltransferase, guanine nucleotide binding protein alpha interacting 2), and repair of DNA damage (BRCA and CDKN1A interacting protein). Taken together, a DIGE approach reveals that overexpression of Bcl‐xL not only inhibits apoptosis in the presence of NaBu but also affects cell proliferation and survival in various aspects. Biotechnol. Bioeng. 2010; 105: 358–367. © 2009 Wiley Periodicals, Inc.  相似文献   
997.
Water-soluble 2′-O-hydroxypropyltrimethylammoniumchitin chloride (2′-O-HTACCt) was prepared directly from β-chitin and 3-chloro-2-hydroxypropyltrimethylammonium chloride (CTA) in basic medium. The effect of alkali concentration, reaction temperature, reaction time, and dosage of CTA on yield and degree of substitution (DS) of 2′-O-HTACCt were studied. These quaternized chitin derivatives were characterized by FTIR and 1H NMR spectroscopy, conductometric titration, and elemental analysis methods. Research results indicate that β-chitin can react directly with CTA to produce a water-soluble 2′-O-HTACCt derivative with a high DS. The optimal preparation conditions were determined to be 35-40 wt % (aq NaOH), 40 °C (reaction temperature), 6 h (reaction time), and 4 (molar ratio of CTA to β-chitin unit).  相似文献   
998.
Generally less glycosylation or deglycosylation has a detrimental effect on enzyme activity and stability. Increased production and secretion of cellobiase was earlier obtained in the presence of the glycosylation inhibitor 2-deoxy-d-glucose in filamentous fungus Termitomyces clypeatus [Mukherjee, S.; Chowdhury, S.; Ghorai, S.; Pal, S.; Khowala, S. Biotechnol. Lett.2006, 28, 1773-1778]. In this study the enzyme was purified from the culture medium by ultrafiltration and gel-permeation, ion-exchange and high-performance liquid chromatography, and its catalytic activity was six times higher compared to the control enzyme. Km and Vmax of the purified enzyme were measured as 0.187 mM and 0.018 U mg−1, respectively, using pNPG as the substrate. The enzyme had temperature and pH optima at 45 °C and pH 5.4, respectively, and retained full activity in a pH range of 5-8 and temperatures of 30-60 °C. Interestingly less glycosylated cellobiase was resistant towards proteolytic as well as endoglycosidase-H digestion and showed higher stability than native enzyme due to increased aggregation of the protein. The enzyme also showed higher specific activity in the presence of cellobiose and pNPG and less susceptibility towards salts and different chemical agents. The β-glucosidase can be considered as a potentially useful enzyme in various food-processing, pharmaceutical and fermentation industries.  相似文献   
999.
Op18/stathmin (Op18) is a microtubule-destabilizing protein that is phosphorylation-inactivated during mitosis and its normal function is to govern tubulin subunit partitioning during interphase. Human tumors frequently overexpress Op18 and a tumor-associated Q18→E mutation has been identified that confers hyperactivity, destabilizes spindle microtubules, and causes mitotic aberrancies, polyploidization, and chromosome loss in K562 leukemia cells. Here we determined whether wild-type and mutant Op18 have the potential to cause chromosomal instability by some means other than interference with spindle assembly, and thereby bypassing the spindle assembly checkpoint. Our approach was based on Op18 derivatives with distinct temporal order of activity during mitosis, conferred either by differential phosphorylation inactivation or by anaphase-specific degradation through fusion with the destruction box of cyclin B1. We present evidence that excessive Op18 activity generates chromosomal instability through interference occurring subsequent to the metaphase-to-anaphase transition, which reduces the fidelity of chromosome segregation to spindle poles during anaphase. Similar to uncorrected merotelic attachment, this mechanism evades detection by the spindle assembly checkpoint and thus provides an additional route to chromosomal instability.  相似文献   
1000.
Mcl-1 full-length (Mcl-11-350), a tightly regulated protein, plays an important role in protecting cells against apoptosis. Cleavage of Mcl-1 at Asp127 by caspase (Mcl-1C1) contributes to the regulation of Mcl-1 expression, but its pro-apoptotic function remains controversial. Here, we reported that Mcl-1128-350 expression induced caspase-dependent apoptosis. We demonstrated that Mcl-1128-350 but not Mcl-11-350 interacts with Bax. This interaction required an intact BH3 Mcl-1128-350 domain and leads to Bax activation and translocation to mitochondria. The silencing of Bax, but not of Bak, prevented Mcl-1128-350 induced apoptosis. In conclusion, Mcl-1128-350 exerts a pro-apoptotic function governed by its capacity to interact with Bax.

Structured summary

MINT-7306752: Mcl-1 (uniprotkb:Q07820) physically interacts (MI:0915) with BAK (uniprotkb:Q16611) by anti tag coimmunoprecipitation (MI:0007)MINT-7306728: Mcl-1 (uniprotkb:Q07820) physically interacts (MI:0914) with BAX (uniprotkb:Q07812) and BAK (uniprotkb:Q16611) by anti tag coimmunoprecipitation (MI:0007)MINT-7307171: F1 ATPase (uniprotkb:Q5TC12), Mcl-1 (uniprotkb:Q07820) and BAX (uniprotkb:Q07812) colocalize (MI:0403) by cosedimentation through density gradients (MI:0029)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号