首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   3篇
  2023年   1篇
  2022年   4篇
  2020年   1篇
  2017年   2篇
  2015年   6篇
  2014年   5篇
  2013年   3篇
  2012年   4篇
  2011年   10篇
  2010年   8篇
  2009年   4篇
  2008年   10篇
  2007年   6篇
  2006年   4篇
  2005年   9篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  1995年   3篇
  1994年   1篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
排序方式: 共有106条查询结果,搜索用时 687 毫秒
41.
During long bone development and post-natal growth, the cartilaginous model of the skeleton is progressively replaced by bone, a process known as endochondral ossification. In the primary spongiosa, osteoclasts degrade the mineralized cartilage produced by hypertrophic chondrocytes to generate cartilage trabeculae that osteoblasts embed in bone matrix. This leads to the formation of the trabecular bone network of the secondary spongiosa that will undergo continuous remodeling. Osteoclasts are specialized in mineralized tissue degradation, with the combined ability to solubilize hydroxyapatite and to degrade extracellular matrix proteins. We reported previously that osteoclasts lacking Dock5 could not degrade bone due to abnormal podosome organization and absence of sealing zone formation. Consequently, adult Dock5/ mice have increased trabecular bone mass. We used Dock5/ mice to further investigate the different functions of osteoclast during endochondral bone formation. We show that long bones are overall morphologically normal in developing and growing Dock5/ mice. We demonstrate that Dock5/ mice also have normal hypertrophic cartilage and cartilage trabecular network. Conversely, trabecular bone volume increased progressively in the secondary spongiosa of Dock5/ growing mice as compared to Dock5+/+ animals, even though their osteoclast numbers were the same. In vitro, we show that Dock5/ osteoclasts do present acidic compartments at the ventral plasma membrane and produce normal amounts of active MMP9, TRAP and CtsK for matrix protein degradation but they are unable to solubilize minerals. These observations reveal that contrarily to bone resorption, the ability of osteoclasts to dissolve minerals is dispensable for the degradation of mineralized hypertrophic cartilage during endochondral bone formation.  相似文献   
42.
43.
Bone development is dependent on the functionality of three essential cell types: chondrocytes, osteoclasts and osteoblasts. If any of these cell types is dysfunctional, a developmental bone phenotype can result.The bone disease osteopetrosis is caused by osteoclast dysfunction or impaired osteoclastogenesis, leading to increased bone mass. In ClC-7 deficient mice, which display severe osteopetrosis, the osteoclast malfunction is due to abrogated acidification of the resorption lacuna. This study sought to investigate the consequences of osteoclast malfunction on bone development, bone structure and bone modeling/remodeling in ClC-7 deficient mice. Bones from wildtype, heterozygous and ClC-7 deficient mice were examined by bone histomorphometry and immunohistochemistry.ClC-7 deficient mice were found to have a severe developmental bone phenotype, characterized by dramatically increased bone mass, a high content of cartilage remnants, impaired longitudinal and radial growth, as well as lack of compact cortical bone development. Indices of bone formation were reduced in ClC-7 deficient mice; however, calcein labeling indicated that mineralization occurred on most trabecular bone surfaces. Osteoid deposition had great regional variance, but an osteopetrorickets phenotype, as observed in oc/oc mice, was not apparent in the ClC-7 deficient mice. A striking finding was the presence of very large abnormal osteoclasts, which filled the bone marrow space within the ClC-7 deficient bones. The development of these giant osteoclasts could be due to altered cell fate of the ClC-7 deficient osteoclasts, caused by increased cellular fusion and/or prolonged osteoclast survival.In summary, malfunctional ClC-7 deficient osteoclasts led to a severe developmental bone phenotype including abnormally large and non-functional osteoclasts. Bone formation paremeters were reduced; however, bone formation and mineralization were found to be heterogenous and continuing.  相似文献   
44.
Interleukin-17 (IL-17) is a cytokine secreted primarily by TH-17 cells that can stimulate the development of osteoclasts (osteoclastogenesis) in the presence of osteoblasts. IL-17, through osteoblasts, has indirect effects on the expression of bone resorption-related enzymes in osteoclasts, which have not been well clarified. Here, using MC3T3-E1 cells and RAW264.7 cells as osteoblasts and osteoclast precursors, we aimed to clarify these effects of IL-17A. MC3T3-E1 cells were cultured in the presence or absence of IL-17A for 72 h and the conditioned media collected (in the presence of soluble receptor activator of NF-кB ligand) and used to culture RAW264.7 cells. To assess osteoclast differentiation, adherent cells were fixed and stained for tartrate-resistant acid phosphatase (TRAP). Our analyses demonstrated that the number of TRAP-positive multinucleated cells increases after 3 days of culture in conditioned medium from IL-17A-treated cells compared to untreated controls. In addition, we observed that the levels of cathepsin K and MMP-9 increase in the conditioned medium from IL-17A-treated cells, whereas CA II expression levels remain unaffected. PGE2 production from MC3T3-E1 cells increased in the presence of IL-17A. Celecoxib, a specific inhibitor of cyclooxygenase-2 (COX-2), blocked both the IL-17A-stimulated increase in TRAP-positive multinucleated cells and the expression of cathepsin K and MMP-9. Furthermore, when MC3T3-E1 cells were transformed with small interfering RNA to silence COX-2 expression before IL-17A treatment, the resulting conditioned medium was less effective at inducing cathepsin K and MMP-9 expression in RAW264.7 cells. These results suggest that IL-17A induces the differentiation and function of osteoclasts via celecoxib-blocked prostaglandin, mainly PGE2, in osteoblasts.  相似文献   
45.
Estrogen deficiency results in accelerated bone turnover with a net increase in bone resorption. Subcutaneous administration of leptin attenuates bone loss in ovariectomized (ovx) rats by reducing bone resorption. However, in addition to its direct beneficial effects, leptin has been reported to have indirect (central nervous system-mediated) antiosteogenic effects on bone, which may limit the efficacy of elevated serum leptin to prevent estrogen deficiency-associated bone loss. The present study evaluated the long-term effects of increased hypothalamic leptin transgene expression, using recombinant adeno-associated virus-leptin (rAAV-Lep) gene therapy, on bone mass, architecture, and cellular endpoints in sexually mature ovx Sprague-Dawley rats. Ovx rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either rAAV-Lep or rAAV-GFP (control vector encoding green fluorescent protein) and maintained for 10 weeks. Additional controls consisted of ovary-intact rats and ovx rats pair-fed to rAAV-Lep rats. Lumbar vertebrae were analyzed by micro-computed tomography and tibiae by histomorphometry. Cancellous bone volume was lower and osteoclast perimeter, osteoblast perimeter, and bone marrow adipocyte density were greater in ovx rats compared to ovary-intact controls. In contrast, differences among ovx groups were not detected for any endpoint evaluated. In conclusion, whereas estrogen deficiency resulted in marked cancellous osteopenia, increased bone turnover and marrow adiposity, increasing hypothalamic leptin transgene expression in ovx rats had neither detrimental nor beneficial effects on bone mass, architecture, or cellular endpoints. These findings demonstrate that the antiresorptive effects of subcutaneous leptin administration in ovx rats are mediated through leptin targets in the periphery.  相似文献   
46.
The role of erythropoietin (Epo) and Epo/Epo receptor (EpoR) signaling pathways for production of red blood cells are well established. However, little is known about Epo/EpoR signaling in non-hematopoietic cells. Recently, we demonstrated that Epo activates JAK/STAT signaling in hematopoietic stem cells (HSCs), leading to the production of bone morphogenetic protein 2 (BMP2) and bone formation and that Epo also directly activates mesenchymal cells to form osteoblasts in vitro. In this study, we investigated the effects of mTOR signaling on Epo-mediated osteoblastogenesis and osteoclastogenesis. We found that mTOR inhibition by rapamycin blocks Epo-dependent and -independent osteoblastic phenotypes in human bone marrow stromal cells (hBMSCs) and ST2 cells, respectively. Furthermore, we found that rapamycin inhibits Epo-dependent and -independent osteoclastogenesis in mouse bone marrow mononuclear cells and Raw264.7 cells. Finally, we demonstrated that Epo increases NFATc1 expression and decreases cathepsin K expression in an mTOR-independent manner, resulting in an increase of osteoclast numbers and a decrease in resorption activity. Taken together, these results strongly indicate that mTOR signaling plays an important role in Epo-mediated bone homeostasis.  相似文献   
47.
Summary In male and female dd-mice at 4, 7, and 14 weeks of age and in 7 and 14-week-old mice gonadectomized at 4 weeks of age, the number of osteoclasts and the number and size of bone resorption areas along the surface of bone trabeculae in the distal metaphysis of the femur were determined. Osteoclasts were counted at the light-microscopic level in paraffin sections of decalcified femora. The number and size of the bone resorption areas were examined by scanning electron microscopy of femora after removing organic material by means of KOH and NaOCl treatment. In untreated mice, the number of osteoclasts and the number and size of bone resorption areas showed no sex differences at 4 weeks of age but were larger in females than males at 7 and 14 weeks of age. In gonadectomized mice, the number of osteoclasts and the bone resorption areas increased in males and decreased in females. The results of the gonadectomy experiments suggest that bone resorption in young adult mice is stimulated by female sex hormone and inhibited by male sex hormone.  相似文献   
48.
Parathyroid hormone (PTH) has been viewed as catabolic for bone. Nevertheless, exogenous PTH is anabolic when administered intermittently, at a frequency that permits complete clearance between doses. In the fetus and neonate, endogenous PTH is required for normal trabecular bone formation. In older animals PTH produces net bone loss in fulfilling its calcium homeostatic role, whereas PTH-related peptide (PTHrP), acting in a paracrine/autocrine mode, is anabolic. The proliferative, differentiating, and anti-apoptotic effects of PTH on cells of the osteoblast lineage leading to anabolism can be direct, or indirect via release of local growth factors. The anabolic effect of PTH is also influenced by osteoclastic activity such that suppression of osteoclasts with anti-resorptive agents, concomitant to administering PTH, may enhance the anabolic effect by delaying a reactive osteoclastic response. In contrast, prolonged suppression of osteoclast activity prior to administering PTH appears to diminish molecular signals that increase the osteoblast pool and thereby reduces the anabolic efficacy of PTH. These observations may define the proper timing of the use of PTH as a therapeutic in diseases of bone loss. Finally, the capacity of exogenous PTH to modulate extra-osseous factors such as 1,25 dihydroxyvitamin D may also modulate its potency as an anabolic agent.  相似文献   
49.
Bone turnover is a highly regulated process, where bone resorption in the normal healthy individual always is followed by bone formation in a manner referred to as coupling. Patients with osteopetrosis caused by defective acidification of the resorption lacuna have severely decreased resorption, in face of normal or even increased bone formation. This suggests that osteoclasts, not their resorptive activity, are important for sustaining bone formation. To investigate whether osteoclasts mediate control of bone formation by production of bone anabolic signals, we collected conditioned media (CM) from human osteoclasts cultured on either bone or plastic, and tested their effects on bone nodule formation by osteoblasts. Both types of CM were shown to dose-dependently induce bone nodule formation, whereas non-conditioned osteoclast culture medium had no effects. These data show that osteoclasts secrete non-bone derived factors, which induce preosteoblasts to form bone-like nodules, potentially explaining the imbalanced coupling seen in osteopetrotic patients.  相似文献   
50.
Ha BG  Hong JM  Park JY  Ha MH  Kim TH  Cho JY  Ryoo HM  Choi JY  Shin HI  Chun SY  Kim SY  Park EK 《Proteomics》2008,8(13):2625-2639
Osteoclast formation and bone resorption are multiple processes that involve the participation of specialized membrane structures and their associated proteins. In this study, we used an MS to analyze the profile of proteins associated with osteoclast membranes and focused on the function of channel proteins in osteoclast differentiation and function. We filtered out with a SEQUEST score greater than 10 and a peptide hit number of more than 2, resulting in the identification of 499 proteins that were commonly found in both macrophages and osteoclasts, 96 proteins selectively found in osteoclasts, and 179 proteins selectively found in macrophages. The proteins that were selectively found in osteoclasts were classified based on their localizations: plasma membrane (17%), ER/Golgi and lysosome/endosome (15%), mitochondrion (18%), nucleus (13%), cytosol (19%), and unknown (18%). Proteins associated with osteoclast function such as v-ATPase, IGF2R, TRAP, and cathepsin K were found in osteoclasts as previously shown. We found several ion channel proteins such as Ank and Nhedc2 and signaling molecules such as Dock5 and RAB-10 in osteoclasts. Inhibition of the Na(+)/H(+) exchanger family by amiloride suppressed RANKL-induced osteoclast fusion and bone resorption. In addition, shRNA for Nhedc2 inhibited osteoclast differentiation. Our results provide a proteomic profile of osteoclast membrane proteins and identify Nhedc2, which is probably associated with proton transport in osteoclasts, as a regulator of osteoclast function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号