首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1300篇
  免费   93篇
  国内免费   158篇
  2024年   2篇
  2023年   13篇
  2022年   17篇
  2021年   28篇
  2020年   30篇
  2019年   32篇
  2018年   26篇
  2017年   29篇
  2016年   33篇
  2015年   34篇
  2014年   40篇
  2013年   48篇
  2012年   25篇
  2011年   61篇
  2010年   36篇
  2009年   108篇
  2008年   96篇
  2007年   95篇
  2006年   94篇
  2005年   61篇
  2004年   81篇
  2003年   58篇
  2002年   42篇
  2001年   26篇
  2000年   33篇
  1999年   35篇
  1998年   27篇
  1997年   27篇
  1996年   22篇
  1995年   29篇
  1994年   26篇
  1993年   29篇
  1992年   29篇
  1991年   12篇
  1990年   15篇
  1989年   13篇
  1988年   17篇
  1987年   10篇
  1986年   16篇
  1985年   21篇
  1984年   14篇
  1983年   8篇
  1982年   9篇
  1981年   12篇
  1980年   15篇
  1979年   8篇
  1978年   6篇
  1977年   2篇
  1976年   1篇
排序方式: 共有1551条查询结果,搜索用时 26 毫秒
71.
为了解红厚壳(Calophyllum inophyllum)的抗逆特性,对西沙群岛自然生长的红厚壳叶片的形态解剖、生理生态、以及叶片和适生土壤的元素含量进行了研究。结果表明,红厚壳是阳生性植物,其上表皮厚,海绵组织发达且栅栏组织排列紧密,气孔排列松散且密度小(24.40 mm~(-2)),有利于叶片保水抵御干旱。叶片的叶绿素a、b含量低(分别为0.87和0.43 mg g~(-1)),表明红厚壳具适应强光环境的能力。叶片的MDA含量低(13.46 nmol g~(-1)),PRO含量高(127.89μg g~(-1)),SOD活性高(149.42 U g~(-1)),总抗氧化能力高(388.60 U g~(-1)),显示红厚壳能通过提高自身的抗氧化能力抵御膜脂过氧化伤害。红厚壳自然生长的珊瑚岛土壤较为贫瘠、营养元素含量低,但红厚壳植株体内具有较高的营养元素含量,表明红厚壳营养元素利用率高,对于贫瘠土壤具有很好的适应能力。因此,红厚壳具有较高的抗氧化胁迫能力和耐受干旱的能力,适宜生长在热带珊瑚岛等土壤贫瘠的生境,可以作为热带珊瑚岛防风固沙和植被恢复的工具种。  相似文献   
72.
目的研究复合微生态制剂对幼刺参体壁营养成分、几种消化酶和免疫酶活力的影响。方法在封闭式循环系统中投喂不同的微生态制剂进行30 d刺参养殖实验。结果投喂液态复合微生态制剂组和粉状复合微生态制剂组的刺参体壁的粗脂肪、总糖、粗蛋白含量最高,两组与对照组相比差异有统计学意义(Ps0.05)。添加微生态制剂的3个实验组刺参肠道蛋白酶、淀粉酶活力均比对照组高,且差异有统计学意义(Ps0.05)。实验组刺参的肠道、体壁、体液过氧化氢酶活力均比对照组高,其中投喂液态复合微生态制剂实验组活力最高。实验组刺参组织的酸性磷酸酶和碱性磷酸酶活力也明显高于对照组(与对照组相比差异有统计学意义,Ps0.05)。结论微生态制剂可以有效改善幼刺参体壁营养成分,促进机体消化活力,提高刺参免疫力。  相似文献   
73.
The species composition of plant and animal assemblages across the globe has changed substantially over the past century. How do the dynamics of individual species cause this change? We classified species into seven unique categories of temporal dynamics based on the ordered sequence of presences and absences that each species contributes to an assemblage time series. We applied this framework to 14,434 species trajectories comprising 280 assemblages of temperate marine fishes surveyed annually for 20 or more years. Although 90% of the assemblages diverged in species composition from the baseline year, this compositional change was largely driven by only 8% of the species' trajectories. Quantifying the reorganization of assemblages based on species shared temporal dynamics should facilitate the task of monitoring and restoring biodiversity. We suggest ways in which our framework could provide informative measures of compositional change, as well as leverage future research on pattern and process in ecological systems.  相似文献   
74.
为揭示全球变暖和降水格局改变对我国中亚热带地区森林生态系统地下生态过程的影响,在福建三明森林生态系统国家野外科学观测研究站内开展杉木(Cunninghamia lanceolata)幼树土壤增温和隔离降水双因子试验,研究增温和隔离降水在夏季对杉木幼树细根生物量、形态及养分特征的影响。结果表明,增温(+5℃,W)、隔离降水(–50%,P)和增温+隔离降水(WP)处理的细根总生物量分别比对照(CT)显著降低35.7%、51.7%和59.1%,P和WP处理的细根总生物量分别比W处理显著降低24.9%和36.4%;W、P和WP处理的0~1 mm细根比根长(specific root length,SRL)比对照均显著增加,而0~1和1~2 mm细根比表面积(specific root area,SRA)均无显著变化;与对照相比,W处理的细根N含量、C/N和δ15N均无显著变化,P处理的细根N含量和C/N分别显著增加和下降,WP处理的细根N含量和δ15N显著增加,而C/N显著降低。因此,未来在全球变暖和降水减少的双重环境胁迫下,调整表层细根形态特征可能不是杉木幼树的主要应对策略;而相较于温度升高,降水减少可能是影响杉木幼树细根生物量及表层化学元素分配的主要环境因子。  相似文献   
75.
Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, is a devastating disease in Henan Province, of the main rapeseed production areas in China. Fluazinam belongs to the broad‐spectrum phenylpyridinamine fungicides, which have high activity in inhibiting the mycelial growth of S. sclerotiorum. In this study, 191 field isolates were obtained from different oilseed rape fields in Henan Province, before being exposed to fluazinam in 2015. The baseline sensitivity of S. sclerotiorum to fluazinam was established. The effective concentration for 50% inhibition of mycelial growth (EC50) ranged from 0.0019 to 0.0337 μg/ml, and the mean EC50 value was 0.0084 ± 0.0055 μg/ml. The range of the frequency distribution was narrow. The results of a cross‐resistance assay revealed no cross‐resistance between fluazinam and carbendazim, dimethachlone, boscalid or fludioxonil. Field efficacy tests showed that the control efficacies of fluazinam (50% WG) applied at 150, 225 and 300 g ai ha?1 were 67%, 73% and 88%, respectively. In contrast, the control efficacies of boscalid (50% WG) and carbendazim (50% WP) applied at 225 and 1,500 g ai ha?1 were 71% and 52%, respectively.  相似文献   
76.
Root sprouting in Rumex acetosella under different nutrient levels   总被引:5,自引:0,他引:5  
Growth of Rumex acetosella, a root sprouting plant, was studied in a pot experiment. Each plant of R. acetosella consisted of two ramets which were interconnected by a root about 9 cm long. One of the ramets was placed in a compartment with nutrient-rich soil, the other with nutrient-poor soil. The root connection between the ramets either remained intact or was severed at the nutrient interface after planting. Growth of new roots was prevented at the nutrient interface.The presence of a connection between the ramets did not affect biomass or shoot production in either soil compartment, indicating a poor integration of the interconnected plant systems. In the nutrient-rich environment, two to four times more shoots and biomass were produced than in the low nutrient regime. A large proportion of buds initiated on roots remained dormant, forming a bud bank. When the number of shoots or buds was expressed per g of root dry weight or per m of root length, the nutrient response was no longer evident or, in a few cases, a significant effect in the opposite direction was obtained. These results show that the greater production of buds and shoots in the nutrient-rich environment reflected an allometric relationship between root biomass and the number of buds and shoots initiated on the roots.  相似文献   
77.
The capture of patchily distributed nutrients by tree roots has received extensive research, but the fate of those nutrients has not. We performed experiments to determine if nutrient transport within tree species is preferentially transported from specific roots to specific branches. Saplings of five species with contrasting growth requirements were examined: two Betula species (B. papyrifera and B. lenta), Populus tremuloides, and two Acer species (A. saccharum and A. rubrum). To quantify patterns of long-distance transport, we examined the accumulation of safranin-O dye and 15N in branches when these tracers were applied to isolated lateral roots (dye and 15N) and to the main root system (15N). Because transport of nutrients between sectors requires flow through intervessel pit pairs of adjacent xylem vessel elements, we quantified the area of intervessel pits, the number of pits per unit vessel wall area, and the % vessel wall area as pits in Acer and Betula. We found that the two Betula species were integrated (tracers applied to isolated roots were likely to accumulate in all branches), while P. tremuloides and the two Acer species were sectorial (tracer accumulation was more concentrated in particular branches). Betula had the largest number of intervessel pits per unit vessel wall area and the largest percentage of vessel wall area as pits. The high density of bordered pits may explain the ease of tracer movement throughout the two Betula species. Greater integration may allow certain trees (e.g., Betula) to exploit nutritionally patchy environments such as rocky soils, and may alter plant-herbivore interactions.  相似文献   
78.
Hyphae and vesicles of arbuscular mycorrhizal fungi (AMF) were found within the decomposing leaves of Myrica parvifolia, M. pubescens and Paepalanthus sp. at three montane sites in Colombia. Hyphae, vesicles, and arbuscule-like structures were also found within scale-like leaves of the rhizomes of Paepalanthus sp. The litter found in the vicinity of the roots was divided into three decomposition layers. The highest AMF colonization occurred in the most decomposed leaves, which were in close association with roots. In contrast, there were no differences in AMF colonization of roots present in the different decomposition layers. Colonization of decomposing leaves by AMF did not differ between the two closely related species M. parvifolia and M. pubescens, nor between two sites (Guatavita and Zipacón, Colombia) differing in soil fertility. Occurrence of vesicles in decomposing leaves was correlated with abundant AMF extraradical hyphae among the leaves. We propose that AMF enter decomposing leaves mechanically through vascular tissue. As a consequence, AMF are well positioned to obtain and efficiently recycle mineral nutrients released by decomposer microorganisms before their loss by leaching or immobilization in soil.  相似文献   
79.
Previous research has identified a relationship between the rate of dissipation of turbulent kinetic energy, , and the mass-transfer-limited rate of uptake by a surface, herein called the 1/4 law, and suggests this law may be applicable to nutrient uptake on coral reefs. To test this suggestion, nitrate uptake rate and gravitational potential energy loss have been measured for a section of Warraber Island reef flat, Torres Strait, northern Australia. The reef flat section is 3 km long, with a 3 m tidal range, and on the days measured, subject to 6 m s–1 tradewinds. The measured nitrate uptake coefficient, S , on two consecutive days during the rising tide was 1.23±0.28 and 1.42±0.52×10–4 m s–1. The measured loss of gravitational potential energy across the reef flat, GPE , on the same rising tides over a 178 m section was 208±24 and 161±20 kg m–1 s–2. Assuming the GPE is dissipated as turbulent kinetic energy in the water column, and using the 1/4 law, the mass-transfer-limited nitrate uptake coefficient, SMTL , on the two days was 1.57±0.03 and 1.45±0.04×10–4 m s–1. Nitrate uptake on Warraber Island reef flat is close to the mass-transfer limit, and is determined by oceanographic nitrate concentrations and energy climate.Communicated by B.C. Hatcher  相似文献   
80.
Goverde M  Erhardt A  Stöcklin J 《Oecologia》2004,139(3):383-391
Effects of elevated CO2 and P availability on plant growth of the legume Lotus corniculatus and consequences for the butterfly larvae of Polyommatus icarus feeding on L. corniculatus were investigated in screen-aided CO2 control chambers under natural conditions on a calcareous grassland in the Swiss Jura mountains. Elevated CO2 conditions and P fertilisation increased the biomass production of L. corniculatus plants and affected the plant chemical composition. CO2 enrichment increased the C/N ratio and sugar concentration and decreased the N and P concentrations. C- and N-based allelochemicals (cyanoglycosides, total polyphenols and condensed tannins) were only marginally affected by CO2 enrichment. P fertilisation increased the specific leaf area and concentrations of water, N, sugar and P, while the C/N ratio and the concentration of total polyphenols decreased. Furthermore, P availability marginally enhanced the effect of elevated CO2 on the total dry mass and sugar concentration while the opposite occurred for the total polyphenol concentration. The changes in food-plant chemistry as a result of P fertilisation positively affected larval mass gain and accelerated the development time of P. icarus. Only a marginal negative effect on larval mass gain was found for CO2 enrichment. However, we found genotype-specific responses in the development time of P. icarus to elevated CO2 conditions. Larvae originating from different mothers developed better either under elevated CO2 or under ambient CO2 but some did not react to CO2 elevation. As far as we know this is the first finding of a genotype-specific response of an insect herbivore to elevated CO2 which suggests genetic shifts in insect life history traits in response to elevated CO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号