首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9451篇
  免费   1216篇
  国内免费   1061篇
  2024年   13篇
  2023年   267篇
  2022年   103篇
  2021年   322篇
  2020年   501篇
  2019年   553篇
  2018年   422篇
  2017年   459篇
  2016年   453篇
  2015年   476篇
  2014年   498篇
  2013年   628篇
  2012年   382篇
  2011年   525篇
  2010年   328篇
  2009年   566篇
  2008年   572篇
  2007年   527篇
  2006年   419篇
  2005年   396篇
  2004年   317篇
  2003年   287篇
  2002年   247篇
  2001年   253篇
  2000年   220篇
  1999年   233篇
  1998年   194篇
  1997年   147篇
  1996年   167篇
  1995年   136篇
  1994年   122篇
  1993年   123篇
  1992年   106篇
  1991年   110篇
  1990年   71篇
  1989年   91篇
  1988年   49篇
  1987年   59篇
  1986年   67篇
  1985年   65篇
  1984年   67篇
  1983年   13篇
  1982年   34篇
  1981年   29篇
  1980年   24篇
  1979年   38篇
  1978年   19篇
  1977年   11篇
  1976年   8篇
  1974年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Aggressive constricting including asphyxiation was observed in wild octopuses (Octopus cyanea Gray, 1849, and Wunderpus photogenicus Hochberg, Norman & Finn, 2006 Hochberg, F.G., Norman, M.D. & Finn, J. (2006) Wunderpus photogenicus n. gen. and sp., a new Octopus from the shallow waters of the Indo-Malayan Archipelago (Cephalopoda: Octopodidae). Molluscan Research 26, 128140.[Web of Science ®] [Google Scholar]). The distal portion of a dorsolateral arm formed a loop around the mantle of another octopus, in at least one case preventing the flow of water into the mantle, over the gills and out of the funnel. Constricting also may have prevented the subordinate individual from releasing ink, a possible irritant and predator attractant. A female O. cyanea used constricting as a form of fatal aggression to asphyxiate a male as part of apparent sexual cannibalism. This female killed a male with which she was mating using the ‘distance’ position. Constriction allowed a W. photogenicus to win during physical interspecific aggression with a close relative, Thaumoctopus mimicus Norman & Hochberg, 2005 Norman, M.D. & Hochberg, F.G. (2005) The ‘Mimic Octopus’ (Thaumoctopus mimicus n. gen. et. sp.), a new octopus from the tropical Indo-West Pacific (Cephalopoda: Octopodidae). Molluscan Research 25, 5770. [Google Scholar]. This action took place near an immediately available food source and interrupted foraging by T. mimicus, providing possible evidence of interference competition among closely related sympatric cephalopod species in the wild.  相似文献   
962.
Oil palm agriculture is rapidly expanding in the Neotropics, at the expense of a range of natural and seminatural habitats. A key question is how this expansion should be managed to reduce negative impacts on biodiversity. Focusing on the Llanos of Colombia, a mixed grassland–forest system identified as a priority zone for future oil palm development, we survey communities of ants, dung beetles, birds and herpetofauna occurring in oil palm plantations and the other principal form of agriculture in the region – improved cattle pasture – together with those of surrounding natural forests. We show that oil palm plantations have similar or higher species richness across all four taxonomic groups than improved pasture. For dung beetles, species richness in oil palm was equal to that of forest, whereas the other three taxa had highest species richness in forests. Hierarchical modelling of species occupancy probabilities indicated that oil palm plantations supported a higher proportion of species characteristic of forests than did cattle pastures. Across the bird community, occupancy probabilities within oil palm were positively influenced by increasing forest cover in a surrounding 250 m radius, whereas surrounding forest cover did not strongly influence the occurrence of other taxonomic groups in oil palm. Overall, our results suggest that the conversion of existing improved pastures to oil palm has limited negative impacts on biodiversity. As such, existing cattle pastures of the Colombian Llanos could offer a key opportunity to meet governmental targets for oil palm development without incurring significant biodiversity costs. Our results also highlight the value of preserving remnant forests within these agricultural landscapes, protecting high biodiversity and exporting avian ‘spill‐over’ effects into oil palm plantations.  相似文献   
963.
Global change affects individual phenotypes and biotic interactions, which can have cascading effects up to the ecosystem level. However, the role of environmentally induced phenotypic plasticity in species interactions is poorly understood, leaving a substantial gap in our knowledge of the impacts of global change on ecosystems. Using a cladoceran–dragonfly system, we experimentally investigated the effects of thermal acclimation, acute temperature change and enrichment on predator functional response and metabolic rate. Using our experimental data, we next parameterized a population dynamics model to determine the consequences of these effects on trophic interaction strength and food‐chain stability. We found that (1) predation and metabolic rates of the dragonfly larvae increase with acute warming, (2) warm‐acclimated larvae have a higher maximum predation rate than cold‐acclimated ones, and (3) long‐term interaction strength increases with enrichment but decreases with both acclimation and acute temperatures. Overall, our experimental results show that thermal acclimation can buffer negative impacts of environmental change on predators and increase food‐web stability and persistence. We conclude that the effect of acclimation and, more generally, phenotypic plasticity on trophic interactions should not be overlooked if we aim to understand the effects of climate change and enrichment on species interaction strength and food‐web stability.  相似文献   
964.
Temperature and nutrient availability play key roles in controlling the pathways and rates at which energy and materials move through ecosystems. These factors have also changed dramatically on Earth over the past century as human activities have intensified. Although significant effort has been devoted to understanding the role of temperature and nutrients in isolation, less is known about how these two factors interact to influence ecological processes. Recent advances in ecological stoichiometry and metabolic ecology provide a useful framework for making progress in this area, but conceptual synthesis and review are needed to help catalyze additional research. Here, we examine known and potential interactions between temperature and nutrients from a variety of physiological, community, and ecosystem perspectives. We first review patterns at the level of the individual, focusing on four traits – growth, respiration, body size, and elemental content – that should theoretically govern how temperature and nutrients interact to influence higher levels of biological organization. We next explore the interactive effects of temperature and nutrients on populations, communities, and food webs by synthesizing information related to community size spectra, biomass distributions, and elemental composition. We use metabolic theory to make predictions about how population‐level secondary production should respond to interactions between temperature and resource supply, setting up qualitative predictions about the flows of energy and materials through metazoan food webs. Last, we examine how temperature–nutrient interactions influence processes at the whole‐ecosystem level, focusing on apparent vs. intrinsic activation energies of ecosystem processes, how to represent temperature–nutrient interactions in ecosystem models, and patterns with respect to nutrient uptake and organic matter decomposition. We conclude that a better understanding of interactions between temperature and nutrients will be critical for developing realistic predictions about ecological responses to multiple, simultaneous drivers of global change, including climate warming and elevated nutrient supply.  相似文献   
965.
966.
967.
Edge effects are a widespread and ubiquitous ecological phenomenon, yet they remain poorly studied across edges between restored and natural forests. To address this lack of knowledge, we studied vertebrate communities across edges between 3‐year old restored mine‐pits and adjacent unmined forest in the jarrah (Eucalyptus marginata) forest of south‐western Australia. We found that mammal communities showed no edge response but reptile communities did. Overall reptile abundance and Morethia obscura abundance were higher in unmined forest along edges, Egernia napoleonis abundance was lower in unmined forest along edges, while Pogona minor abundance was lower in restored mine‐pits along edges. Predictive models were unable to predict species edge responses, due to the lack of knowledge of the ecology of jarrah forest reptiles, but proved useful in identifying potential ecological mechanisms behind observed edge responses and suggested that potential mechanisms were likely different for each species. Our study is the first to show edge responses in both habitats forming the edge between restored and natural forests, emphasizing the importance of studying both habitats forming the edge. Our results also suggest that, despite being poorly studied, edge responses are common across edges between restored and natural forest and result from a variety of ecological mechanisms. An increased understanding of the ecological mechanisms driving edge responses across edges between restored and natural forests will improve our ability to integrate restored areas into cross‐landscape management and, ultimately, improve our ability to manage landscapes for biodiversity conservation.  相似文献   
968.
Bacterial symbiosis has played a fundamental role in the evolution of eukaryotes. However, we still know little about how cooperative relationships with bacteria originate, and why they form in some host species but not others. Facultative symbionts that are beneficial, but not essential, provide unique insights into these processes. We use data from over a hundred aphid species to test if host life history is associated with the presence of facultative symbionts. We find that aphid species that have mutualistic associations with ants that protect them from natural enemies are less likely to carry symbionts that provide similar benefits. We also find one symbiont species occurs more frequently in unrelated aphid species that specialise on certain plant genera. In addition, aphid species that attack multiple plants often carry different symbiont complements. Our findings provide evidence of the ecological conditions that facilitate stable, mutually beneficial relationships between microbes and eukaryotic hosts.  相似文献   
969.
Ecological studies require key decisions regarding the appropriate size and number of sampling units. No methods currently exist to measure precision for multivariate assemblage data when dissimilarity‐based analyses are intended to follow. Here, we propose a pseudo multivariate dissimilarity‐based standard error (MultSE) as a useful quantity for assessing sample‐size adequacy in studies of ecological communities. Based on sums of squared dissimilarities, MultSE measures variability in the position of the centroid in the space of a chosen dissimilarity measure under repeated sampling for a given sample size. We describe a novel double resampling method to quantify uncertainty in MultSE values with increasing sample size. For more complex designs, values of MultSE can be calculated from the pseudo residual mean square of a permanova model, with the double resampling done within appropriate cells in the design. R code functions for implementing these techniques, along with ecological examples, are provided.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号