首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   842篇
  免费   77篇
  国内免费   29篇
  2023年   14篇
  2022年   24篇
  2021年   33篇
  2020年   33篇
  2019年   28篇
  2018年   34篇
  2017年   17篇
  2016年   25篇
  2015年   32篇
  2014年   68篇
  2013年   62篇
  2012年   35篇
  2011年   35篇
  2010年   22篇
  2009年   30篇
  2008年   38篇
  2007年   38篇
  2006年   33篇
  2005年   34篇
  2004年   30篇
  2003年   20篇
  2002年   18篇
  2001年   17篇
  2000年   11篇
  1999年   15篇
  1998年   27篇
  1997年   21篇
  1996年   17篇
  1995年   11篇
  1994年   13篇
  1993年   14篇
  1992年   8篇
  1991年   9篇
  1990年   9篇
  1989年   5篇
  1988年   7篇
  1987年   8篇
  1986年   6篇
  1985年   6篇
  1984年   9篇
  1983年   3篇
  1982年   5篇
  1981年   5篇
  1980年   1篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
排序方式: 共有948条查询结果,搜索用时 15 毫秒
81.
Hepatic steatosis is associated with insulin resistance and metabolic syndrome because of increased hepatic triglyceride content. We have reported previously that deficiency of response gene to complement 32 (RGC-32) prevents high-fat diet (HFD)-induced obesity and insulin resistance in mice. This study was conducted to determine the role of RGC-32 in the regulation of hepatic steatosis. We observed that hepatic RGC-32 was induced dramatically by both HFD challenge and ethanol administration. RGC-32 knockout (RGC32−/−) mice were resistant to HFD- and ethanol-induced hepatic steatosis. The hepatic triglyceride content of RGC32−/− mice was decreased significantly compared with WT controls even under normal chow conditions. Moreover, RGC-32 deficiency decreased the expression of lipogenesis-related genes, sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthase, and stearoyl-CoA desaturase 1 (SCD1). RGC-32 deficiency also decreased SCD1 activity, as indicated by decreased desaturase indices of the liver and serum. Mechanistically, insulin and ethanol induced RGC-32 expression through the NF-κB signaling pathway, which, in turn, increased SCD1 expression in a SREBP-1c-dependent manner. RGC-32 also promoted SREBP-1c expression through activating liver X receptor. These results demonstrate that RGC-32 contributes to the development of hepatic steatosis by facilitating de novo lipogenesis through activating liver X receptor, leading to the induction of SREBP-1c and its target genes. Therefore, RGC-32 may be a potential novel drug target for the treatment of hepatic steatosis and its related diseases.  相似文献   
82.
Low-grade inflammation is a risk factor for the onset of atherosclerosis. Little is known about the involvement of endotoxin absorption from the gut during the digestion of lipids. In the present study, we first investigated in humans the impact of a mixed meal containing dispersed lipids on postprandial endotoxemia and inflammation. We then investigated the effect of (i) oil emulsification in vivo in rats and (ii) fatty acid amounts in vitro using Caco-2 cells on postprandial endotoxemia. In humans, postprandial endotoxemia increased early after the meal. Moreover, we evidenced that the endotoxin receptor sCD14 increased during digestion and that chylomicrons could contribute to absorbed endotoxin transport. This could explain the significant peak of inflammatory cytokine IL-6 that we observed 2 h after the mixed meal. Interestingly, in rats, the emulsion led to both higher endotoxemia and hypertriglyceridemia than oil and compared to a control saline load. In vitro, incubation of Caco-2 cells with increasing fatty acid concentrations enhanced epithelial absorption of endotoxin. To our knowledge, this is the first study evidencing in healthy humans that, following a mixed meal containing lipids, increased endotoxemia is associated with raised sCD14 and a peak of IL-6. On a repeated basis, this may thus be a triggering cascade for the onset of atherosclerosis. In this respect, optimizing both dietary fat amount and structure could be a possible strategy to limit such low-grade endotoxemia and inflammation by the control of postprandial lipemia.  相似文献   
83.
The structure-activity relationship of a series of tricyclic-sulfonamide compounds 11-32 culminating in the discovery of N-[trans-4-(4,5-dihydro-3,6-dithia-1-aza-benzo[e]azulen-2-ylamino)-cyclohexylmethyl]-methanesulfonamide (15, Lu AA33810) is reported. Compound 15 was identified as a selective and high affinity NPY5 antagonist with good oral bioavailability in mice (42%) and rats (92%). Dose dependent inhibition of feeding was observed after i.c.v. injection of the selective NPY5 agonist ([cPP(1-7),NPY(19-23),Ala(31),Aib(32),Gln(34)]-hPP). In addition, ip administration of Lu AA33810 (10 mg/kg) produced antidepressant-like effects in a rat model of chronic mild stress.  相似文献   
84.
目的 在HeLa宫颈癌细胞中研究不同浓度的多西环素对缝隙连接蛋白Cx26/Cx32表达及由其形成的缝隙连接通讯功能的影响.方法 采用Western印迹检测HeLa细胞中Cx26/Cx32的蛋白表达;荧光示踪实验用于检测HeLa细胞中由Cx26/Cx32形成的缝隙连接通讯功能.结果 Western印迹结果显示多西环素在0.01~1 μg/ml的范围内,随着剂量的增加,Cx26/Cx32蛋白表达水平增加;荧光示踪实验结果显示HeLa细胞之间的荧光传递随着多西环素增加也相应增强.结论 采用加入不同浓度多西环素的方法,可制备缝隙连接通讯功能强弱不同的细胞模型.  相似文献   
85.
目的:构建人胱硫醚β合成酶(human cystathionineβ-synthase,hCBS)基因原核表达载体,在E.coli BL21(DE3)中表达,并进行纯化和酶活性检测。方法:以胰腺细胞cDNA文库为模板,采用聚合酶链式反应(PCR)扩增hCBS基因蛋白编码区的全序列,克隆入原核表达载体pET32a(+),构建重组质粒pET32a(+)-hCBS。经限制性内切酶双酶切及DNA序列分析鉴定目的基因后与人CBS基因(基因bank号:BT007154.1)完全一致,转入E.coli BL21(DE3)中,由IPTG诱导表达融合蛋白。结果:经SDS-PAGE、Western blot分析,证明诱导表达的蛋白为重组人CBS(rhCBS)。再由Ni-NTA树脂亲和层析,并脱盐冷冻干燥后获得重组rhCBS(约19 mg/L培养物),并测得其比活力约为57 kU/g。结论:成功地表达纯化出具有功能活性的重组蛋白rhCBS,为进一步研究该酶的相互作用蛋白以及其在生物学和临床科学的作用奠定了基础。  相似文献   
86.
In this study, we used Southern hybridization of genomic DNA with the integral hap1 gene as a probe to show that this gene is only present in pathogenic Leptospira strains. We then selected PCR primers based on the hap1 gene, and tested them on several Leptospira strains and biological samples. Specific amplification was obtained for all pathogenic strains tested. Negative PCR results were observed with all saprophytic leptospire strains used as well as with other spirochetes and bacteria commonly found in biological samples. The results of direct PCR performed on biological samples, such as blood, urine or kidneys correlated with the results obtained with the classical Leptospira tests (culture and MAT). A PCR assay based on this gene would be a very useful tool for the rapid, sensitive and specific identification of pathogenic leptospires in samples for diagnosis or epidemiological survey.  相似文献   
87.
Adhesion of mature asexual stage Plasmodium falciparum parasite-infected erythrocytes (iRBC) to the vascular endothelium is a critical event in the pathology of Plasmodium falciparum malaria. It has been suggested that the clag gene family is essential in cytoadherence to endothelial receptors. Primers used in PCR and RT-PCR assays allowed us to determine that the gene encoding CLAG 3 (GenBank accession no. NP_473155) is transcribed in the Plasmodium falciparum FCB2 strain. Western blot showed that antisera produced against polymerized synthetic peptides from this protein recognized a 142-kDa band in P. falciparum schizont lysate. Seventy-one 20-amino-acid-long nonoverlapping peptides, spanning the CLAG 3 (cytoadherence-linked asexual protein on chromosome 3) sequence were tested in C32 cell and erythrocyte binding assays. Twelve CLAG peptides specifically bound to C32 cells (which mainly express CD36) with high affinity, hereafter referred to as high-affinity binding peptides (HABPs). Five of them also bound to erythrocytes. HABP binding to C32 cells and erythrocytes was independent of peptide charge or peptide structure. Affinity constants were between 100 nM and 800 nM. Cross-linking and SDS-PAGE analysis allowed two erythrocyte binding proteins of around 26 kDa and 59 kDa to be identified, while proteins of around 53 kDa were identified as possible receptor sites for C-32 cells. The HABPs' role in Plasmodium falciparum invasion inhibition was determined. Such an approach analyzing various CLAG 3 regions may elucidate their functions and may help in the search for new antigens important for developing antimalarial vaccines.  相似文献   
88.
Constitutive NF-kappaB activity has emerged as an important cell survival regulator. Canonical inducible NF-kappaB activation involves IkappaB kinase (IKK)-dependent dual phosphorylation of Ser 32 and 36 of IkappaBalpha to cause its beta-TrCP-dependent ubiquitylation and proteasomal degradation. We recently reported that constitutive NF-kappaB (p50/c-Rel) activity in WEHI231 B cells is maintained through proteasome inhibitor-resistant (PIR) IkappaBalpha degradation in a manner that requires Ser 32 and 36, without the requirement of a direct interaction with beta-TrCP. Here we specifically examined whether dual phosphorylation of Ser 32 and 36 was required for PIR degradation. Through mutagenesis studies, we found that dual replacement of Ser 32 and 36 with Glu permitted beta-TrCP and proteasome-dependent, but not PIR, degradation. Moreover, single replacement of either Ser residue with Leu permitted PIR degradation in WEHI231 B cells. These results indicate that PIR degradation occurs in the absence of dual phosphorylation, thereby explaining the beta-TrCP-independent nature of the PIR pathway. Additionally, we found evidence that PIR IkappaBalpha degradation controls constitutive NF-kappaB activation in certain multiple myeloma cells. These results suggest that B lineage cells can differentiate between PIR and canonical IkappaBalpha degradation through the absence or presence of dually phosphorylated IkappaBalpha.  相似文献   
89.
The static fluid mosaic model of biological membranes has been progressively complemented by a dynamic membrane model that includes phospholipid reordering in domains that are proposed to extend from nanometers to microns. Kinetic models for lipolytic enzymes have only been developed for homogeneous lipid phases. In this work, we develop a generalization of the well-known surface dilution kinetic theory to cases where, in a same lipid phase, both domain and nondomain phases coexist. Our model also allows understanding the changes in enzymatic activity due to a decrease of free substrate concentration when domains are induced by peptides. This lipid reordering and domain dynamics can affect the activity of lipolytic enzymes, and can provide a simple explanation for how basic peptides, with a strong direct interaction with acidic phospholipids (such as beta-amyloid peptide), may cause a complex modulation of the activities of many important enzymes in lipid signaling pathways.  相似文献   
90.
Nicotine, acting on nicotinic acetylcholine receptors (nAChRs) expressed at pre-synaptic dopaminergic terminals, has been shown to stimulate the release of dopamine in the neostriatum. However, the molecular consequences of pre-synaptic nAChR activation in post-synaptic neostriatal neurons are not clearly understood. Here, we investigated the effect of nAChR activation on dopaminergic signaling in medium spiny neurons by measuring phosphorylated DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa) at Thr34 (the PKA-site) in mouse neostriatal slices. Nicotine produced dose-dependent responses, with a low concentration (1 microm) causing a sustained decrease in DARPP-32 Thr34 phosphorylation and a high concentration (100 microm) causing a transient increase in DARPP-32 Thr34 phosphorylation. Depending on the concentration of nicotine, either dopamine D2 or D1 receptor signaling was predominantly activated. Nicotine at a low concentration (1 microm) activated dopamine D2 receptor signaling in striatopallidal/indirect pathway neurons, likely by activating alpha4beta2* nAChRs at dopaminergic terminals. Nicotine at a high concentration (100 microm) activated dopamine D1 receptor signaling in striatonigral/direct pathway neurons, likely by activating (i) alpha4beta2* nAChRs at dopaminergic terminals and (ii) alpha7 nAChRs at glutamatergic terminals, which, by stimulating the release of glutamate, activated NMDA/AMPA receptors at dopaminergic terminals. The differential effects of low and high nicotine concentrations on D2- and D1-dependent signaling pathways in striatal neurons may contribute to dose-dependent actions of this drug of abuse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号