首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6689篇
  免费   171篇
  国内免费   220篇
  2023年   50篇
  2022年   48篇
  2021年   59篇
  2020年   80篇
  2019年   116篇
  2018年   156篇
  2017年   70篇
  2016年   95篇
  2015年   91篇
  2014年   330篇
  2013年   505篇
  2012年   217篇
  2011年   314篇
  2010年   217篇
  2009年   278篇
  2008年   307篇
  2007年   325篇
  2006年   273篇
  2005年   282篇
  2004年   243篇
  2003年   225篇
  2002年   162篇
  2001年   125篇
  2000年   97篇
  1999年   145篇
  1998年   129篇
  1997年   114篇
  1996年   118篇
  1995年   118篇
  1994年   127篇
  1993年   90篇
  1992年   106篇
  1991年   95篇
  1990年   95篇
  1989年   113篇
  1988年   85篇
  1987年   92篇
  1986年   88篇
  1985年   101篇
  1984年   136篇
  1983年   79篇
  1982年   108篇
  1981年   83篇
  1980年   74篇
  1979年   75篇
  1978年   69篇
  1977年   49篇
  1976年   44篇
  1974年   23篇
  1973年   25篇
排序方式: 共有7080条查询结果,搜索用时 15 毫秒
71.
In adult rats, a significant portion of brain ethanolamine glycerophospholipids are synthesized by a pathway involving phosphatidylserine decarboxylase, a mitochondrial enzyme. We have now examined whether this enzyme plays a particularly prominent role during development. Activities for both phosphatidylserine decarboxylase and succinate dehydrogenase (another mitochondrial enzyme) were determined in brain homogenates from rats 5 days of age to adulthood. Succinate dehydrogenase activity, expressed on a per unit brain protein basis, increased markedly during development. This pattern has been reported previously and is as expected from the postnatal increase in oxidative metabolism. In contrast, phosphatidylserine decarboxylase activity decreased 40% from 5 to 30 days of age. The apparent Km for brain phosphatidylserine decarboxylase was 85 microM in both young (8- and 20-day-old) and adult animals. Parallel studies in vivo were carried out to determine the contribution of the phosphatidylserine decarboxylase pathway, relative to pathways utilizing ethanolamine directly, to the synthesis of brain ethanolamine glycerophospholipids. Animals were injected intracranially with a mixture of L-[G-3H]serine and [2-14C]ethanolamine and incorporation into the base moieties of the phospholipids determined. The 3H/14C ratio of ethanolamine glycerophospholipids decreased about 50% during development. Our studies in vitro and in vivo both suggest that phosphatidylserine decarboxylase plays a significant role in the synthesis of brain ethanolamine glycerophospholipids at all ages, although it is relatively more prominent early in development.  相似文献   
72.
73.
Summary A detailed comparative analysis of the Escherichia coli and Salmonella typhimurium hisIE and hisD gene products and the functionally equivalent, single, HIS4 gene product of Saccharomyces cerevisiae permitted several insights concerning the relationship between these genes. Our analysis supports the idea that HIS4 results from the fusion of hisIE and hisD. The comparison permitted a more precise definition of the functional domains of hisI/HIS4A and hisE/HIS4B as well as the two functional domains of hisD/HIS4C. The homologies between the bacterial and yeast sequences suggest a region of the hisD/HIS4C protein that may constitute one of the active centres. A large fragment at the amino terminal region of the yeast protein is missing from the bacterial hisIE gene product and is probably not needed for catalytic activity. Another region of non-homology in the yeast protein is probably a peptide bridge connecting the HIS4AB domain to HIS4C. Although the overall homology at the level of amino acid sequence is modest (about 38%) there is a striking similarity when the hydropathic patterns and predicted secondary structural configurations of these proteins are compared.  相似文献   
74.
Early iron deficiency in rat does not affect the weight or the protein, DNA, and RNA content but results in a slight reduction in gamma-aminobutyric acid (GABA) (13%, p less than 0.01) and glutamic acid (20%, p less than 0.001) content of the brain. The activities of the two GABA shunt enzymes, glutamate dehydrogenase and GABA-transaminase, and of the NAD+-linked isocitrate dehydrogenase (ICDH) were inhibited whereas the glutamic acid decarboxylase, mitochondrial NADP+-linked ICDH, and succinic dehydrogenase activities remained unaltered in brain. On rehabilitation with the iron-supplemented diet for 1 week, these decreased enzyme activities in brain attained the corresponding control values. However, the hepatic nonheme iron content increased to about 80% of the control, after rehabilitation for 2 weeks. A prolonged iron deficiency resulting in decreased levels of glutamate and GABA may lead to endocrinological, neurological, and behavioral alterations.  相似文献   
75.
The methyl ester of succinic semialdehyde (SSA) was examined as a substrate for succinate semialdehyde dehydrogenase (SSADH) from rat brain. It was found that the ester can be oxidized by the enzyme. Values of Km for SSA-Me were higher than for those for SSA, and for this substrate the enzyme showed a substrate-dependent inhibition. This finding suggests that the carboxylate group of SSA is not essential in the process of inhibition of SSADH by the substrate. Cyclopropyl analogues of SSA, cis- and trans-1-formyl-cyclopropan-2-carboxylic acids, were also individually tested as substrates of SSADH. Only the trans isomer was found to be oxidized to the corresponding dicarboxylic acid; it inhibited the enzyme in the same range of concentrations as SSA. The above data suggest that, as for gamma-aminobutyric acid, SSA is present in an unfolded, transoid conformation at the active site of SSADH.  相似文献   
76.
Glutamate dehydrogenase (GDH) activity was studied in 17 regions of six human brains. Duration and conditions of the postmortem period did not affect enzyme activity. Specific activity ranged between 103 and 377 nmoles/min/mg protein at 25 degrees C and it was 10-fold higher than that found in leukocytes. Apart from exclusively white matter regions (corpus callosum and centrum ovale), there was a moderate regional distribution (2.5-fold variation), with highest values in the inferior olive and hypothalamus, and lowest in the cerebellum and lenticular nucleus. With alpha-ketoglutarate (alpha-KG), NADH, or NH4+ as variable substrate, the apparent Km values in human brain were Km alpha-KG = 1.9 X 10(-3) M, KmNADH = 0.21 X 10(-3) M, and KmNH4+ = 28 X 10(-3) M, and in leukocytes they were Km alpha-KG = 1.7 X 10(-3) M, KmNADH = 0.24 X 10(-3) M, and KmNH4+ = 28 X 10(-3) M. The effects of cofactors, inhibitor, and pH were similar in brain and leukocyte GDH.  相似文献   
77.
利用8-(6-氨已基)-氨基-5’-AMP Sepharose亲和层析和DEAE-Sephadex A50离子交换层析纯化了大熊猫LDH-M_4。纯化的大熊猫LDH-M_4呈针状晶体,比活为412单位/毫克。聚丙烯酰胺凝胶电泳鉴定为一条区带。SDS凝胶电泳测得其亚基分子量为35,900;等电聚焦电泳测得其等电点为8.05。经氨基酸组成分析,得出每个大熊猫LDH-M亚基含有5个Cys,26个Lys和10个Arg。其N-末端氨基酸残基可能为封闭的,C末端氨基酸残基经测定为Phe。大熊猫LDH-M_4的TPCK-胰蛋白酶水解物在纤维素膜指纹图谱上呈现35个肽斑,与已知序列的猪LDH-M_4的指纹图谱相比较,多数肽斑位置相同,约有10个肽斑在两者指纹图谱上有差异。  相似文献   
78.
本文报告一种新的腺苷亲和层析凝胶的合成方法。利用这种凝胶可从大鼠心脏、肝脏及小牛主动脉平滑肌的水溶部份分离出几种腺苷结合蛋白质,其亚基分子量(据SDS-PAGE)分别为35,000、37,000、46,000、43,000及15,300Dal。现已证明,35,000Dal蛋白质是乳酸脱氢酶及苹果酸脱氢酶,43,000Dal蛋白质是腺苷激酶,46,000Dal蛋白质可能是S-腺苷同型半胱氨酸水解酶。15,000Dal蛋白质前人未有报道。它对腺苷具有高度特导性和亲和力,推测是腺苷的细胞内受体和/或载体。测定了这种低分子量腺苷结合蛋白质的氨基酸组成及某些物理常数:pI=6.5;沉降系数2.42S,微分比容0.727cm~3/g,与腺苷复合物的解离常数K_D=2.3μM。  相似文献   
79.
Our previous studies using rodent/human somatic-cell hybrids suggested that the expression of human mitochondrial glycerol-3-phosphate dehydrogenase (GPDM) is dependent on the presence of human mitochondria. This has now been tested directly by analysis of GPDM activity in a series of nine hybrid-cell lines, four segregating human chromosomes and five losing rodent chromosomes (reverse segregants). The chromosome composition of the hybrids was deduced from analysis of biochemical markers and examination of G- and G11-banded metaphase spreads and the mitochondrial content was determined by Southern blot analysis, using cloned mouse and human mtDNA sequences as probes. We found that the mtDNA species present in these hybrids correlated exactly with the pattern of chromosome segregation such that the conventional hybrids contained rodent mtDNA and the reverse segregants human mtDNA. However, the pattern of GPDM expression was not directly correlated with the species of chromosomes or mitochondria present: all the hybrids showed strong rodem GPDM activity and two from each class of hybrid also showed human GPDM activity but the other hybrids were negative for human GPDM. We conclude that rodent GPDM readily integrates into human mitochondria, that the expression of rodent GPDM is not dependent on the presence of rodent mitochondria, and that GPDM is not coded by mtDNA. Human GPDM either is not capable of being inserted into the rodent mitochondrial membrane or is regulated in some way in the hybrid cells by an unidentified rodent factor.  相似文献   
80.
We have determined the complete amino acid sequence of a 20K Da COOH-terminal fragment of porcine NADPH-cytochrome P-450 reductase. The 20K Da fragment is probably produced by a proteolytic cleavage of the intact protein in porcine liver microsomes, and since the cleavage does not affect enzymatic activity, the fragment has been studied as a distinct domain. The sequence comprises 175 amino acids including three cysteine residues, one of which has been previously identified as protected by NADPH from S-carboxymethylation. The NADPH-protected cysteine lies in a stretch of 12 residues with partial homology to glutathione reductase, and is adjacent to a hydrophobic region containing a glycine-rich stretch homologous to other FAD-containing proteins. The predicted secondary structure over this entire region is beta-sheet/beta-turn/beta-sheet/alpha-helix/beta-sheet/beta-turn/alpha-h elix corresponding to hydrophobic residues 21-28/glycine-rich residues 29-33/residues 34-38/residues 39-54/residues 56-61/NADPH-protected cysteine residues 62-78/residues 71-82. It is possible that the 20K Da domain provided a significant portion of the sequence responsible for binding FAD and NADPH in the intact enzyme. This data provides a basis for further active site studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号